Calcule as integrais por substituição
a) ∫x(x²-3) elevado a 5 dx
b) ∫x+1/x²+2x+3 dx
Soluções para a tarefa
Seja y uma função de x, tal que y = x² - 3. Então:
Portanto:
____________________________________________
Vamos chamar x² + 2x + 3 de v e derivar v:
Substituindo na integral:
Resposta:
\displaystyle\int x(x^{2}-3)^{5}dx
Seja y uma função de x, tal que y = x² - 3. Então:
dy=2xdx~~~\therefore~~~\boxed{\boxed{xdx=\dfrac{1}{2}dy}}
Portanto:
\displaystyle\int x(x^{2}-3)^{5}dx=\int(x^{2}-3)^{5}xdx\\\\\\\int x(x^{2}-3)^{5}dx=\int\dfrac{y^{5}}{2}dy\\\\\\\displaystyle\int x(x^{2}-3)^{5}dx=\dfrac{1}{2}\int y^{5}dy\\\\\\\displaystyle\int x(x^{2}-3)^{5}dx=\dfrac{1}{2}\cdot\dfrac{y^{6}}{6}+constante\\\\\\\displaystyle\int x(x^{2}-3)^{5}dx=\dfrac{1}{12}y^{6}+constante\\\\\\\boxed{\boxed{\displaystyle\int x(x^{2}-3)^{5}dx=\dfrac{1}{12}(x^{2}-3)^{6}+constante}}
____________________________________________
\displaystyle\int\dfrac{x+1}{x^{2}+2x+3}dx
Vamos chamar x² + 2x + 3 de v e derivar v:
dv=2x+2dx~~~\therefore~~~\dfrac{1}{2}dv=\dfrac{1}{2}(2x+2)dx~~~\therefore~~~\boxed{\boxed{x+1dx=\dfrac{1}{2}dv}}
Substituindo na integral:
\displaystyle\int\dfrac{x+1}{x^{2}+2x+3}dx=\int\dfrac{(\frac{1}{2})}{v}dv\\\\\\\int\dfrac{x+1}{x^{2}+2x+3}dx=\dfrac{1}{2}\int\dfrac{1}{v}dv\\\\\\\int\dfrac{x+1}{x^{2}+2x+3}dx=\dfrac{1}{2}ln|v|+constante\\\\\\\boxed{\boxed{\int\dfrac{x+1}{x^{2}+2x+3}dx=\dfrac{1}{2}ln(x^{2}+2x+3)+constante}}
Explicação passo-a-passo: