Matemática, perguntado por DairlonBarbosa, 1 ano atrás

Calcule a integral definida:
 \int\limits^1_0 {(sen \pi x.cos \pi x)} \, dx

Soluções para a tarefa

Respondido por carlosmath
1
\displaystyle
I=\int\limits_{0}^1\sin \pi x \cdot \cos \pi x\; dx \\ \\
I=\frac{1}{\pi}\int\limits_{0}^1\sin \pi x \; d(\sin \pi x) \\ \\
I=\frac{1}{\pi}\left.\left(\frac{\sin^2 \pi x}{2}\right)\right|_0^1\\ \\
I=\frac{1}{\pi}\left(\frac{\sin^2 \pi }{2}-\frac{\sin^2 0 }{2}\right)\\ \\ \\
\boxed{I=0}
Perguntas interessantes