Matemática, perguntado por collegeurban, 1 ano atrás

calcule a integral dada pela funcao.

Anexos:

RaissaSantiago: Esta pergunta não esta incompleta?
collegeurban: tem um arquivo do qord anexado.

Soluções para a tarefa

Respondido por Usuário anônimo
1
Boa tarde!

Solução!

Comprimento\overline{AB}=\displaystyle \int_{2}^{4}(log_{2}x)dx\\\\\\
Vou~~ fazer~~ algumas~~ etapas ~~separadas.\\\\\\
log_{2}x\\\\\\
y=    log_{2}x\\\\\\
2^{y}=x\\\\\
yln2=lnx\\\\\\
ln2 \frac{dy}{dx}= \frac{1}{x}\\\\\\\
 \boxed{\frac{dy}{dx  }=\frac{1}{xln2}}

Vamos fazer a integração por partes!

\boxed{\displaystyle \int (u~dv)=uv-\displaystyle \int vdu}\\\\\\


u=log_{2}x~~~~~~~dv=1dx\\\\\\
du= \frac{1}{xln2}~~~~~~~v=x\\\\\\\\\

\displaystyle \int_{2}^{4}(log_{2}x)dx=x.log_{2}x-\displaystyle \int1. \frac{1}{xln2}dx\\\\\\\
\displaystyle \int_{2}^{4}(log_{2}x)dx=x.log_{2}x- \frac{1}{ln2} \displaystyle \int1.dx\\\\\\\

\displaystyle \int_{2}^{4}(log_{2}x)dx=x.log_{2}x- \frac{x}{ln2} +c\\\\\\\


Comprimento\overline{AB}=(x.log_{2}x- \frac{x}{ln2})-(x.log_{2}x- \frac{x}{ln2})\bigg|_{2}^{4}   \\\\\\\\\\
Comprimento\overline{AB}=(4.log_{2}4- \frac{4}{ln2})-(2.log_{2}2- \frac{2}{ln2})   \\\\\\\\\\ 

Comprimento\overline{AB}=(4.2- 5,77)-(2.1- 2,88)   \\\\\\\\\\  
Comprimento\overline{AB}=(2,23)-(-0,88)   \\\\\\\\\\
Comprimento\overline{AB}=(2,23+0,88)   \\\\\\\\\\
 Comprimento\overline{AB}=(3,11)   \\\\\\\\\\
 \boxed{RespostaComprimento\overline{AB}=3,11~u.c}

Não é nenhuma das alternativa!

Boa tarde!
Bons estudos!

Perguntas interessantes