Matemática, perguntado por brunamvt363, 6 meses atrás

Calcule a distância entre os pontos A(26,36) e B(10,28)

Soluções para a tarefa

Respondido por yrlanna45350
1

Resposta:

\begin{gathered}d_{AB}=\sqrt{(x_{A}-x_{B})^{2}+(y_{A}-y_{B})^{2}}\\ \\ \text{substituimos na f\'{ormula}}:\\ \\ \text{*A(1, 9) e B(2, 8)}\\ \\ d_{AB}=\sqrt{(1-2)^{2}+(9-8)^{2}}\\ \\ d_{AB}=\sqrt{1+1}\\ \\ \boxed{d_{AB}=\sqrt{2}}\\ \\ \text{*C(-3, 5) e D(-3, 12)}\\ \\ d_{CD}=\sqrt{(-3-(-3))^{2}+(5-12)^{2}}\\ \\ d_{CD}=\sqrt{0+49}\\ \\ \boxed{d_{CD}=7}\\ \\ \text{*P(-5, 4) e Q(-2, 7)}\\ \\ d_{PQ}=\sqrt{(-5-(-2))^{2}+(4-7)^{2}}\\ \\ d_{PQ}=\sqrt{9+9}\\ \\ d_{PQ}=\sqrt{18}\\ \\ \boxed{d_{PQ}=3\sqrt{2}}\end{gathered}

d

AB

=

(x

A

−x

B

)

2

+(y

A

−y

B

)

2

substituimos na f

ormula

ˊ

:

*A(1, 9) e B(2, 8)

d

AB

=

(1−2)

2

+(9−8)

2

d

AB

=

1+1

d

AB

=

2

*C(-3, 5) e D(-3, 12)

d

CD

=

(−3−(−3))

2

+(5−12)

2

d

CD

=

0+49

d

CD

=7

*P(-5, 4) e Q(-2, 7)

d

PQ

=

(−5−(−2))

2

+(4−7)

2

d

PQ

=

9+9

d

PQ

=

18

d

PQ

=3

2

\begin{gathered}\\ \text{*M(0, 12) e N(9, 0)}\\ \\ d_{MN}=\sqrt{(0-9)^{2}+(12-0)^{2}}\\ \\ d_{MN}=\sqrt{81+144}\\ \\ d_{MN}=\sqrt{225}\\ \\ \boxed{d_{MN}=15}\end{gathered}

*M(0, 12) e N(9, 0)

d

MN

=

(0−9)

2

+(12−0)

2

d

MN

=

81+144

d

MN

=

225

d

MN

=15

Perguntas interessantes