Matemática, perguntado por amiltonsilvacorrea, 4 meses atrás

calcular o rotacional x^2yz+xy^2z+xyz^2​

Soluções para a tarefa

Respondido por solkarped
11

✅ Após resolver os cálculos, concluímos que o rotacional do referido campo vetorial é:

   \Large\displaystyle\text{$\begin{gathered}\boxed{\boxed{\:\:\:\ \textrm{rot}\:\vec{V}= x(z^{2} - y^{2})\,\vec{i} - y(z^{2} - x^{2})\,\vec{j} + z(y^{2} - x^{2})\,\vec{k}\:\:\:}}\end{gathered}$}

   

Seja o dado:

                        \Large\displaystyle\text{$\begin{gathered} x^{2}yz + xy^{2}z + xyz^{2}\end{gathered}$}     

Organizando o campo vetorial, temos:

   \Large\displaystyle\text{$\begin{gathered} \vec{V}(x, y, z) = (x^{2}yz)\,\vec{i} + (xy^{2}z)\,\vec{j} + (xyz^{2})\,\vec{k}\end{gathered}$}

Sendo V um campo vetorial em R³, podemos dizer que o rotacional de V - denotado por "rot V" - é o produto vetorial entre o operador diferencial e o campo vetorial V, isto é:

    \Large\displaystyle\text{$\begin{gathered} \textrm{rot}\:\vec{V} = \nabla\wedge\vec{V}\end{gathered}$}

                 \Large\displaystyle\text{$\begin{gathered} = \bigg(\frac{\partial}{\partial x},\,\frac{\partial}{\partial y},\,\frac{\partial}{\partial z}\bigg) \wedge(X_{V}\vec{i},\,Y_{V}\vec{j},\,Z_{V}\vec{k})\end{gathered}$}

                 \Large\displaystyle\text{$\begin{gathered} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k}\\\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z}\\X_{V} & Y_{V} & Z_{V}\end{vmatrix}\end{gathered}$}

                 \Large\displaystyle\text{$\begin{gathered} = \begin{vmatrix}\frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\Y_{V} & Z_{V}\end{vmatrix}\vec{i} - \begin{vmatrix}\frac{\partial}{\partial x} & \frac{\partial}{\partial z} \\X_{V} & Z_{V}\end{vmatrix}\vec{j} + \begin{vmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y}\\X_{V} & Y_{V}\end{vmatrix}\vec{k}\end{gathered}$}

                \large\displaystyle\text{$\begin{gathered} = \left(\frac{\partial Z_{V}}{\partial y} - \frac{\partial Y_{V}}{\partial z}\right)\vec{i} - \left(\frac{\partial Z_{V}}{\partial x} - \frac{\partial X_{V}}{\partial z}\right)\vec{j} + \left(\frac{\partial Y_{V}}{\partial x} - \frac{\partial X_{V}}{\partial y}\right)\vec{k}\end{gathered}$}

                   \Large\displaystyle\text{$\begin{gathered} = (xz^{2} - xy^{2})\vec{i} - (yz^{2} - x^{2}y)\vec{j} + (y^{2}z - x^{2}z)\vec{k}\end{gathered}$}

                   \Large\displaystyle\text{$\begin{gathered} = x(z^{2} - y^{2})\,\vec{i} - y(z^{2} - x^{2})\,\vec{j} + z(y^{2} - x^{2})\,\vec{k}\end{gathered}$}      

✅ Portanto, a resposta é:

     \Large\displaystyle\text{$\begin{gathered} \textrm{rot}\: \vec{V}= x(z^{2} - y^{2})\,\vec{i} - y(z^{2} - x^{2})\,\vec{j} + z(y^{2} - x^{2})\,\vec{k}\end{gathered}$}

\LARGE\displaystyle\text{$\begin{gathered} \underline{\boxed{\boldsymbol{\:\:\:Bons \:estudos!!\:\:\:Boa\: sorte!!\:\:\:}}}\end{gathered}$}

Saiba mais:

  1. https://brainly.com.br/tarefa/52158446
  2. https://brainly.com.br/tarefa/1295497
  3. https://brainly.com.br/tarefa/38763398
  4. https://brainly.com.br/tarefa/1330762
  5. https://brainly.com.br/tarefa/19808046
  6. https://brainly.com.br/tarefa/18700455
  7. https://brainly.com.br/tarefa/36728251
  8. https://brainly.com.br/tarefa/10184836
  9. https://brainly.com.br/tarefa/16770974
  10. https://brainly.com.br/tarefa/52550523
Anexos:
Perguntas interessantes