As novas placas de automóveis que serão utilizadas no Mercosul terão uma identificação da seguinte forma: duas letras, seguidas de três algarismos, seguidas de mais duas letras.
PLACA: AB 123 CD
O número de placas obtido com essa mudança em relação ao número máximo de placas atual (três letras seguidas de quatro algarismos), considerando o alfabeto com 26 letras e os algarismos de 0 a 9 é:
Soluções para a tarefa
Placa atual:
2 letras= 26x26 ; 3 números=10x10x10
Então:
26x26x10x10x10= 676000
2 letras= 26x26 ; 3 números= 10x10x10 ; duas letras= 26x26
Então:
26x26x10x10x10x26x26= 456976000
Placas atualmente = ABC 1234
Placas pretendidas = ABCD 123
▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃
Sabemos que para placas , podem se repetir as letras e os algarismos desde que a questão não nos coloque esta restrição.
▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃
L = Letras
A = Algarismo
▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃
Portanto para as placas atualmente temos:
(26L)×(26L)×(26L)×(10A)×(10A)×(10A)×(10A)
26×26×26×10×10×10×10 = 26³ × 10⁴
26³ × 10⁴ = 17576 × 10000
17576 × 10000 = 175760000
Portanto são 175.760.000 combinações diferentes.
▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃
Para as placas pretendidas:
(26L)×(26L)×(26L)×(26L)×(10A)×(10A)×(10A)
26×26×26×26×10×10×10 = 26⁴ × 10³
26⁴ × 10³ = 456976 × 1000
456976 × 1000 = 456976000
Portanto são 456.976.000 combinações diferentes.
▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃
A questão quer saber a razão entre o número novo e o número antigo. A razão nada mais é que uma comparação entre duas grandezas em forma de fração.
▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃
▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃
O aumento será igual á "razão" menos "1" .Logo o aumento será = 2,6 - 1 = 1,6 ou seja "inferior ao dobro''.
▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃