Matemática, perguntado por jessickaid43, 1 ano atrás

Análise combinatória

Maria deve criar uma senha de 4 dígitos para sua conta bancária. Nessa senha, somente os algarismos 1,2,3,4,5 podem ser e um mesmo algarismo pode aparecer mais de uma vez  Contudo, superticiosa, Maria não quer que sua senha tenha o número 13, isto é, o algarismo 1 seguido imediatamente do 3. De quantas maneiras distintas Maria pode escolher a sua senha?

Soluções para a tarefa

Respondido por jessanaje
540

Valores possíveis: 1, 2, 3, 4, 5
Número de digitos: 4

Primeiro devemos calcular o número de possibilidades independente do número 1 e 3 ficarem juntos, então temos:

5 x 5 x 5 x 5 = 5^4 = 625

Agora iremos calcular a probabilidade de os número 1 e 3 saírem juntos: Basta considerarmos o número 1 3 como um único então temos agora 3 posíções para combinarmos e 4 números:

Temos as seguintes possibilidades:

13 __ __
__ 13 __
__ __ 13

Então:

(5 x 5) x 3 = 75

Mas ainda temos a possíbilidade de senha 13 13 que já está incluída nos 75, então

o correto é 75 - 1 = 74

Agora basta subtrairmos o número total de combinações pelo número de combinações que aparecem os números 1 e 3 juntos:

625 - 74 = 551

Logo o número de possíbilidades de formar esta senha é de 551 possibilidades



Espero que tenha ajudado. :D

Respondido por AlissonLaLo
196

\Large\boxed{\boxed{\boxed{{Ola\´\ Jessica}}}}}

A senha deve conter 4 dígitos e os dígitos podem se repetir.

Temos a disposição de escolha os números 1,2,3,4 e 5.

Porém Maria não quer que sua senha apareça o número 13 (1+3) .

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

1º Opção de senha restrita = 13ØØ

2º Opção de senha restrita = Ø13Ø

3º Opção de senha restrita =ØØ13

São 3 opções que não desejamos para a senha de Maria.

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Agora iremos calcular o total de possibilidades ( como se não existisse a restrição de senha) .

1º Digito de escolha = 5 Possibilidades

2º Digito de escolha = 5 Possibilidades

3º Digito de escolha = 5 Possibilidades

4º Digito de escolha = 5 Possibilidades

5⁴=625 Possibilidades de escolha destas senhas.

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

I) Agora fixando o 1 e o 3 nessa ordem( 1,3,Ø,Ø) , vamos calcular o total de possibilidades existentes.

1º Digito de escolha = 1 Possibilidade ( o número 1 )

2º Digito de escolha = 1 Possibilidade ( o número 3 )

3º Digito de escolha = 5 Possibilidades

4º Digito de escolha = 5 Possibilidades

5² = 25 Possibilidades.

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

II) Agora fixando o 1 e o 3 nessa ordem( Ø,1,3,Ø) , vamos calcular o total de possibilidades existentes.

1º Digito de escolha = 5 Possibilidades

2º Digito de escolha = 1 Possibilidade

3º Digito de escolha = 1 Possibilidade

4º Digito de escolha = 5 Possibilidades

5² = 25 Possibilidades.

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

III) Agora fixando o 1 e o 3 nessa ordem( Ø,Ø,1,3) , vamos calcular o total de possibilidades existentes.

1º Digito de escolha = 5 Possibilidades

2º Digito de escolha = 5 Possibilidades

3º Digito de escolha = 1 Possibilidade

4º Digito de escolha = 1 Possibilidade

5² = 25 Possibilidades.

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Agora note no I e no III , temos no I 25 opções de senhas começando com 13 e no III também temos 25 opções de senhas terminadas em 13.Como uma das duas já está contidas nas 625 opções diferentes , temos que subtrair um do total das possibilidade I , II e III.

25+25+25 = 75

75-1 = 74.

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Agora temos o total de senhas diferentes(625) e o total de senhas em que 1 e 3 são seguidos , como a Maria não quer que esses números apareçam , temos que subtraí-los do total.

625-74 = 551

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Portanto são 551 maneiras distintas que Maria pode escolher a sua senha.

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Espero ter ajudado!

Perguntas interessantes