Matemática, perguntado por gcmp, 11 meses atrás

4^3.27^2.32^-1.2^1.9^3=

Soluções para a tarefa

Respondido por Usuário anônimo
4

Utilizando propriedades de potencias, temos que esta expressão equivale a 2.125.764.

Explicação passo-a-passo:

Então temos a seguinte expressão:

4^3.27^2.32^{-1}.2^1.9^3

Primeiramente vamos retirar o sinal negativo dos expoentes mudando eles de posição:

\frac{4^3.27^2.2^1.9^3}{32^1}

Agora vamos transformar os números maiores em potencias de menores:

\frac{4^3.27^2.2^1.9^3}{32^1}

\frac{(2^2)^3.(3^3)^2.2^1.(3^2)^3}{(2^5)^1}

Agora, quando temos expoente de exponte, podemos multiplicar:

\frac{2^6.3^6.2^1.3^6}{2^5}

Agora o expoentes de mesma base podem ser somados:

\frac{2^7.3^12}{2^5}

E podemos subtrair o expoente de baixo na mesma base:

\frac{2^7.3^12}{2^5}

2^2.3^12

Agora este calculo é mais simples de ser feito, porém somente com a calculadora:

2^2.3^12=2125764

Assim temos que esta expressão equivale a 2.125.764.

Perguntas interessantes