Matemática, perguntado por gugugugcp7pwep, 5 meses atrás

3. (ITA) - resolva a inequação em R:16<(41​)log1/5​(x2−x+19)​

Anexos:

Soluções para a tarefa

Respondido por auditsys
3

Resposta:

\textsf{Leia abaixo}

Explicação passo a passo:

\sf{16 &lt; \left(\dfrac{1}{4}\right)^{log_{\frac{1}{5}}\:(x^2 - x + 19)}

\sf{16 &lt; \left(\dfrac{1}{4}\right)^{-log_{5}\:(x^2 - x + 19)}

\sf{\left(\dfrac{1}{4}\right)^{-log_{5}\:(x^2 - x + 19)} &gt; 16}

\sf{4^{log_{5}\:(x^2 - x + 19)} &gt; 4^2}

\sf{log_{5}\:(x^2 - x + 19) &gt; 2}

\sf{log_{5}\:(x^2 - x + 19) &gt; log_5\:5^2}

\sf{x^2 - x + 19 &gt; 25}

\sf{x^2 - x - 6 &gt; 0}

\mathsf{\Delta = b^2 - 4.a.c}

\mathsf{\Delta = (-1)^2 - 4.1.(-6)}

\mathsf{\Delta = 1 + 24}

\mathsf{\Delta = 25}

\mathsf{x = \dfrac{-b \pm \sqrt{\Delta}}{2a} = \dfrac{1 \pm \sqrt{25}}{2} \rightarrow \begin{cases}\mathsf{x' = \dfrac{1 + 5}{2} = \dfrac{6}{2} = 3}\\\\\mathsf{x'' = \dfrac{1 - 5}{2} = -\dfrac{4}{2} = -2}\end{cases}}

\boxed{\boxed{\mathsf{S = \{\:\:\:]-\infty,-2\:[ \:\:\:\cup\:\:\: ]\:3,+\infty[\:\:\:\}}}}

Perguntas interessantes