Matemática, perguntado por bresantiago, 1 ano atrás

1. Considerando log de 2=0,3010 e log de 3=0,4771, calcule:
a) log 5
b) log 0,0001
c) log 200
d) log 3000
e) log da raiz cúbica de 60
f) log (0,54) elevado a 0,5
2. Ache y real sabendo-se que: (imagem)


Anexos:

Soluções para a tarefa

Respondido por gabrieldoile
17
a)

log 5 = log \frac{10}{2}  = log10 - log2 = 1 -(0,3010)  = 0699

b) 

log0,0001 = log10^{-4} = -4*log10 = -4*-1 = -4

c)

log 200 = log(2*100) = log2 + log100 = (0,3010) + 2 = 2,3010

d)

log 3000 = log(3*1000) = log3 + log 1000 = (0,4771) + 3 = 3,4771

e)

log  \sqrt[3]{60}  = log60^{ \frac{1}{3} } =  \frac{1}{3} *log60 =  \frac{1}{3} *log(2*3*10) =  \\ \\  \frac{1}{3}*(log2 + log3 + log10)  =  \frac{1}{3} *(0,3010 +0,4771+ 1 ) = \\  \\   \frac{1,7781}{3}  = 0,5927

f)

log (0,54)^{0,5} = log( \frac{54}{100} )^{ \frac{1}{2} } =  \frac{1}{2} *(log54 - log 100) =\\  \\  \frac{1}{2} *[log(3*3*2*3) - 2] =  \frac{1}{2} *(log3 + log3 + log2 + log3) - 2 =   \\  \\  \frac{1}{2} *[(3*0,4771 + 0,3010 ) - 2] =  \frac{1}{2} *(1,4313 + 0,3010-2) =  \\  \\   \frac{1,4313+0,3010-2}{2}  =  \frac{1,7323-2}{2}  =  \frac{-0,2677}{2} = -0,13385

2) Temos o seguinte:

log_{2} \ y = log_{2} \ 3 + log_{2} \ 6 - 3log_{2} \ 4 \\  \\ 
log_{2} \ y = log_{2} \ (3*6) - log_{2} \ 4^3 \\  \\ 
log_{2} \ y = log_{2} \ (18) - log_{2} \ (64) \\  \\ 
log_{2} \ y = log_{2} \ ( \frac{18}{64} ) \\  \\ 
log_{2} \ y = log_{2} \ ( \frac{9}{32} ) \\  \\ 
y =  \frac{9}{32}
Perguntas interessantes
Matemática, 1 ano atrás