Matemática, perguntado por odilon2, 1 ano atrás

xln (x) dx como resol essa integral indefinida

Anexos:

Soluções para a tarefa

Respondido por Usuário anônimo
2
Boa tarde Odilon!

Solução!

Você resolve essa integral por partes.

\displaystyle \int xlnxdx


u=lnx~~~~dv=xdx\\\\\
du= \dfrac{1}{x}dx~~~~v= \dfrac{ x^{2} }{2}dx \\\\\\\\

\displaystyle \int xlnxdx=uv-\displaystyle \int vdu \\\\\\\\
\displaystyle \int xlnxdx=lnx.\dfrac{ x^{2} }{2}-\displaystyle \int\dfrac{ x^{2} }{2}.\dfrac{1}{x}dx




\displaystyle \int xlnxdx=lnx.\dfrac{ x^{2} }{2}- \dfrac{1}{2} \displaystyle \int\dfrac{ x^{2} }{x}dx\\\\\\\\\\\
\displaystyle \int xlnxdx=lnx.\dfrac{ x^{2} }{2}- \dfrac{1}{2} \displaystyle \int xdx\\\\\\\\\\\
\displaystyle \int xlnxdx=lnx.\dfrac{ x^{2} }{2}- \dfrac{1}{2}  \frac{ x^{2} }{2}+c \\\\\\\\\\
\displaystyle \int xlnxdx=lnx.\dfrac{ x^{2} }{2}-  \frac{ x^{2} }{4}+c \\\\\\\\\\\\\\
\boxed{Resp:~~\displaystyle \int xlnxdx=\dfrac{ lnx.x^{2} }{2}-  \frac{ x^{2} }{4}+c}


Boa tarde!
Bons estudos!


Perguntas interessantes