Matemática, perguntado por MiihGomes2467, 1 ano atrás

(VUNESP) Maria tem em sua bolsa R$ 15,60 em moedas de 10 centavos e de 25 centavos. Dado que o número de moedas de 25 centavos é o dobro do número de moedas de 10 centavos, qual é o total de moedas na bolsa? (Utilize a regra de Cramer)

Soluções para a tarefa

Respondido por felipe2910
4

Seja o número de moedas de R$ 0,10 e y o número de moedas de R$ 0,25. Portanto, se multiplicarmos 0,10 por x e adicionarmos ao produto de 0,25 por y, teremos o total de R$ 15,60, como a equação aponta:

0,10.x + 0,25.y = 15,60 (*)

A segunda informação no texto nos garante que y = 2.x. Resolvendo pelo método da substituição, substituiremos o valor encontrado para y em (*). Sendo assim:

0,10.x + 0,25.(2.x) = 15,60
0.10.x + 0,5 x = 15,60
0,6. x = 15,6
x = 26

Retornando à equação y = 2.x, vamos substituir o valor encontrado parax:

y = 2.x
y = 2.26
y = 52

Portanto, Maria tem 26 moedas de R$ 0,10 e 52 moedas de R$ 0,25. No total, Maria tem 78 moedas.


Perguntas interessantes