Vimos que são muitos os algoritmos de classificação usados na estatística ou na ciência dos dados. Vimos também que podem ser divididos entre classificadores determinísticos ou probabilísticos, em que, dentre estes últimos, se encontra o modelo de regressão logística. Relativamente a modelos de regressão logística, que são aqui o nosso foco, analise as afirmativas a seguir. Modelos de regressão logística são usados como modelos preditivos para casos em que a variável resposta é qualitativa, preferencialmente qualitativa dicotômica. As variáveis de entrada podem ser de qualquer tipo, quantitativas ou qualitativas. Modelos de regressão logística são chamados de regressão logística simples, quando só há uma variável de entrada, também denominada de variável regressora, variável preditora ou variável independente. Modelos de regressão logística são chamados de regressão logística múltipla, quando há mais do que uma variável de entrada, também denominadas de variáveis regressoras, variáveis preditoras ou variáveis independentes. Modelos de regressão logística são classificadores probabilísticos. Por exemplo, para dados sintomas de um certo paciente, um modelo de regressão logística, depois de adequadamente treinado, fará a predição da probabilidade deste paciente estar ou não infectado com o vírus HIV. Está correto o que se afirma em: I, II, III e IV. IV, apenas. II e III, apenas. I e III, apenas. I, II e III, apenas.
Soluções para a tarefa
Respondido por
6
Resposta:
Resposta Correta:
Correta I, II, III e IV.
Explicação:
Modelos de regressão logística são usados quando a variável resposta é qualitativa, preferencialmente qualitativa dicotômica. Regressão logística simples e múltipla são, respectivamente, quanto só há uma ou há várias variáveis de entrada. Modelos de regressão logística são classificadores probabilísticos. Ou seja, todas as asserções são verdadeiras.
Perguntas interessantes