Matemática, perguntado por bdbdbbx, 1 ano atrás

vigésimo termo da pa 8,5,2

Soluções para a tarefa

Respondido por Usuário anônimo
0
a20 = a1 + 19r
a20 = 8 + 19*(3)
a20 = 8 + 57
a20 = 65
Respondido por viniciusszillo
1

Olá! Segue a resposta com algumas explicações.

(I)Interpretação do problema:

Da P.A. (8, 5, 2,...), tem-se:

a)primeiro termo (a₁), ou seja, o termo que ocupa a primeira posição:8

b)vigésimo termo (a₂₀): ?

c)número de termos (n): 20 (Justificativa: Embora a PA seja infinita, para o cálculo de um determinado termo, é feito um "corte" nesta PA infinita, de modo a considerar a posição que o termo ocupa (no caso, 20ª), equivalente ao número de termos.)

d)Embora não se saiba o valor do vigésimo termo, apenas pela observação dos três primeiros termos da progressão fornecida, pode-se afirmar que a razão será negativa (afinal, os valores dos termos sempre decrescem, afastam-se do zero, particularmente à sua esquerda, pensando-se na reta numérica e, para que isto aconteça, necessariamente se deve somar um valor constante negativo, a razão, a um termo qualquer) e o termo solicitado igualmente será maior que zero.

===========================================

(II)Determinação da razão (r) da progressão aritmética:

Observação 1: A razão (r), valor constante utilizado para a obtenção dos sucessivos termos, será obtida por meio da diferença entre um termo qualquer e seu antecessor imediato.

r = a₂ - a₁ ⇒  

r = 5 - 8 ⇒

r = -3  (Razão negativa, conforme prenunciado no item d acima.)

===========================================

(III)Aplicação das informações fornecidas pelo problema e da razão acima obtida na fórmula do termo geral (an) da P.A., para obter-se o vigésimo termo:

an = a₁ + (n - 1) . r ⇒

a₂₀ = a₁ + (n - 1) . (r) ⇒

a₂₀ = 8 + (20 - 1) . (2) ⇒

a₂₀ = 8 + (19) . (-3) ⇒         (Veja a Observação 2.)

a₂₀ = 8 - 57  ⇒

a₂₀ = -49

Observação 2:  Foi aplicada na parte destacada a regra de sinais da multiplicação: dois sinais diferentes, +x- ou -x+, resultam sempre em sinal de negativo (-).

Resposta: O 20º termo da P.A.(8, 5, 2,...) é -49.

=======================================================  

DEMONSTRAÇÃO (PROVA REAL) DE QUE A RESPOSTA ESTÁ CORRETA

→Substituindo a₂₀ = -49 na fórmula do termo geral da PA e omitindo, por exemplo, o primeiro termo (a₁), verifica-se que o valor correspondente a ele será obtido nos cálculos, confirmando-se que o vigésimo termo realmente corresponde ao afirmado:

an = a₁ + (n - 1) . r ⇒

a₂₀ = a₁ + (n - 1) . (r) ⇒

-49 = a₁ + (20 - 1) . (-3) ⇒

-49 = a₁ + (19) . (-3) ⇒

-49 = a₁ - 57 ⇒    (Passa-se 38 ao 1º membro e altera-se o sinal.)

-49 + 57 = a₁ ⇒  

8 = a₁ ⇔              (O símbolo ⇔ significa "equivale a".)

a₁ = 8                   (Provado que a₂₀ = -49.)

→Veja outras tarefas relacionadas a cálculo de termos em progressão aritmética e resolvidas por mim:

https://brainly.com.br/tarefa/25855791

https://brainly.com.br/tarefa/25888655

https://brainly.com.br/tarefa/2863337

https://brainly.com.br/tarefa/4081079

brainly.com.br/tarefa/3596616

brainly.com.br/tarefa/25713044

brainly.com.br/tarefa/4130142

brainly.com.br/tarefa/10210269

brainly.com.br/tarefa/14650577

brainly.com.br/tarefa/8907084

brainly.com.br/tarefa/25790757

brainly.com.br/tarefa/1123082

brainly.com.br/tarefa/25743374

Perguntas interessantes