verifique se a função f(x,y)=lnraiz x²+y² e solução da equação de laplace
Soluções para a tarefa
Respondido por
2
Como foi proposta uma função
em duas dimensões, vamos considerar que estamos tratando da Equação de Laplace no
, qual seja:
![\dfrac{\partial^2}{\partial x^2}[u(x,y)]+\dfrac{\partial^2}{\partial y^2} [u(x,y)]=0~~~(i) \dfrac{\partial^2}{\partial x^2}[u(x,y)]+\dfrac{\partial^2}{\partial y^2} [u(x,y)]=0~~~(i)](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cpartial%5E2%7D%7B%5Cpartial+x%5E2%7D%5Bu%28x%2Cy%29%5D%2B%5Cdfrac%7B%5Cpartial%5E2%7D%7B%5Cpartial+y%5E2%7D+%5Bu%28x%2Cy%29%5D%3D0%7E%7E%7E%28i%29)
Assim, vamos calcular a expressão E a seguir e verificar se ela é nula:
![E=\dfrac{\partial^2}{\partial x^2}[f(x,y)]+\dfrac{\partial^2}{\partial y^2}[f(x,y)]\\\\
E=\dfrac{\partial^2}{\partial x^2}[\ln(\sqrt{x^2+y^2})]+\dfrac{\partial^2}{\partial y^2}[\ln(\sqrt{x^2+y^2})]\\\\
E=\dfrac{\partial}{\partial x}\left(\dfrac{\partial}{\partial x}(\ln\sqrt{x^2+y^2})\right)+\dfrac{\partial}{\partial y}\left(\dfrac{\partial}{\partial y}(\ln\sqrt{x^2+y^2})\right)\\\\ E=\dfrac{\partial^2}{\partial x^2}[f(x,y)]+\dfrac{\partial^2}{\partial y^2}[f(x,y)]\\\\
E=\dfrac{\partial^2}{\partial x^2}[\ln(\sqrt{x^2+y^2})]+\dfrac{\partial^2}{\partial y^2}[\ln(\sqrt{x^2+y^2})]\\\\
E=\dfrac{\partial}{\partial x}\left(\dfrac{\partial}{\partial x}(\ln\sqrt{x^2+y^2})\right)+\dfrac{\partial}{\partial y}\left(\dfrac{\partial}{\partial y}(\ln\sqrt{x^2+y^2})\right)\\\\](https://tex.z-dn.net/?f=E%3D%5Cdfrac%7B%5Cpartial%5E2%7D%7B%5Cpartial+x%5E2%7D%5Bf%28x%2Cy%29%5D%2B%5Cdfrac%7B%5Cpartial%5E2%7D%7B%5Cpartial+y%5E2%7D%5Bf%28x%2Cy%29%5D%5C%5C%5C%5C%0AE%3D%5Cdfrac%7B%5Cpartial%5E2%7D%7B%5Cpartial+x%5E2%7D%5B%5Cln%28%5Csqrt%7Bx%5E2%2By%5E2%7D%29%5D%2B%5Cdfrac%7B%5Cpartial%5E2%7D%7B%5Cpartial+y%5E2%7D%5B%5Cln%28%5Csqrt%7Bx%5E2%2By%5E2%7D%29%5D%5C%5C%5C%5C%0AE%3D%5Cdfrac%7B%5Cpartial%7D%7B%5Cpartial+x%7D%5Cleft%28%5Cdfrac%7B%5Cpartial%7D%7B%5Cpartial+x%7D%28%5Cln%5Csqrt%7Bx%5E2%2By%5E2%7D%29%5Cright%29%2B%5Cdfrac%7B%5Cpartial%7D%7B%5Cpartial+y%7D%5Cleft%28%5Cdfrac%7B%5Cpartial%7D%7B%5Cpartial+y%7D%28%5Cln%5Csqrt%7Bx%5E2%2By%5E2%7D%29%5Cright%29%5C%5C%5C%5C)


Como a equação (i) é verdadeira para
, a função dada é solução da Equação de Laplace.
Assim, vamos calcular a expressão E a seguir e verificar se ela é nula:
Como a equação (i) é verdadeira para
Lukyo:
Excelente! Muito obrigado. :)
Perguntas interessantes
História,
11 meses atrás
Matemática,
11 meses atrás
Matemática,
11 meses atrás
Matemática,
1 ano atrás
Química,
1 ano atrás