Verifique que o polinômio ![q(x) q(x)](https://tex.z-dn.net/?f=q%28x%29)
divide
sendo:
![q(x) = {x}^{9} + {x}^{8} + {x}^{7} + ... + {x}^{2} + x q(x) = {x}^{9} + {x}^{8} + {x}^{7} + ... + {x}^{2} + x](https://tex.z-dn.net/?f=q%28x%29+%3D+%7Bx%7D%5E%7B9%7D+%2B+%7Bx%7D%5E%7B8%7D+%2B+%7Bx%7D%5E%7B7%7D+%2B+...+%2B+%7Bx%7D%5E%7B2%7D+%2B+x)
![p(x) = {x}^{9999} + {x}^{8888} + {x}^{7777} + ... + {x}^{2222} + {x}^{1111} p(x) = {x}^{9999} + {x}^{8888} + {x}^{7777} + ... + {x}^{2222} + {x}^{1111}](https://tex.z-dn.net/?f=p%28x%29+%3D+%7Bx%7D%5E%7B9999%7D+%2B+%7Bx%7D%5E%7B8888%7D+%2B+%7Bx%7D%5E%7B7777%7D+%2B+...+%2B+%7Bx%7D%5E%7B2222%7D+%2B+%7Bx%7D%5E%7B1111%7D+)
#Cálculo e explicação
Soluções para a tarefa
Respondido por
3
São dados os seguintes polinômios:
![q(x)=x^9+x^8+...+x\\\\ p(x)=x^{9999}+x^{8888}+...+x^{1111} q(x)=x^9+x^8+...+x\\\\ p(x)=x^{9999}+x^{8888}+...+x^{1111}](https://tex.z-dn.net/?f=q%28x%29%3Dx%5E9%2Bx%5E8%2B...%2Bx%5C%5C%5C%5C+p%28x%29%3Dx%5E%7B9999%7D%2Bx%5E%7B8888%7D%2B...%2Bx%5E%7B1111%7D)
Queremos verificar se q(x) divide p(x), o que é equivalente a mostrarmos se todas as raízes de q(x) também são raizes de p(x). Seguindo esse procedimento, vamos tentar encontrar as raízes de q(x). Para isso, utilizaremos o seguinte lema:
Lema: Se
é uma n-ésima raiz da unidade, isto é,
, então
é raiz do polinômio
.
———————————————
Prova: Podemos escrever:
![p_n(w_n)=w_n^{n-1}+w_n^{n-2}+...+1 p_n(w_n)=w_n^{n-1}+w_n^{n-2}+...+1](https://tex.z-dn.net/?f=p_n%28w_n%29%3Dw_n%5E%7Bn-1%7D%2Bw_n%5E%7Bn-2%7D%2B...%2B1)
Podemos considerar que
representa a soma dos termos de uma PG. Como
:
![S_n=a_1\cdot\dfrac{q^n-1}{q-1}\\\\ p_n(w_n)=1\cdot\dfrac{w_n^n-1}{w_n-1}\\\\<br />p_n(w_n)=\dfrac{w_n^n-1}{w_n-1} S_n=a_1\cdot\dfrac{q^n-1}{q-1}\\\\ p_n(w_n)=1\cdot\dfrac{w_n^n-1}{w_n-1}\\\\<br />p_n(w_n)=\dfrac{w_n^n-1}{w_n-1}](https://tex.z-dn.net/?f=S_n%3Da_1%5Ccdot%5Cdfrac%7Bq%5En-1%7D%7Bq-1%7D%5C%5C%5C%5C+p_n%28w_n%29%3D1%5Ccdot%5Cdfrac%7Bw_n%5En-1%7D%7Bw_n-1%7D%5C%5C%5C%5C%3Cbr+%2F%3Ep_n%28w_n%29%3D%5Cdfrac%7Bw_n%5En-1%7D%7Bw_n-1%7D)
Pela definição dada,
. Logo:
![p_n(w_n)=\dfrac{1-1}{w_n-1}\Longrightarrow p_n(w_n)=0 p_n(w_n)=\dfrac{1-1}{w_n-1}\Longrightarrow p_n(w_n)=0](https://tex.z-dn.net/?f=+p_n%28w_n%29%3D%5Cdfrac%7B1-1%7D%7Bw_n-1%7D%5CLongrightarrow+p_n%28w_n%29%3D0)
Como queríamos demonstrar.
Obs: Como há n-1 raízes n-ésimas da unidade diferentes de 1 e
é de grau n-1, essas raízes da unidade são todas as raízes do polinômio.
———————————————
Vamos analisar q(x):
![q(x)=x^9+x^8+...+x\\\\ q(x)=x(x^8+x^7+...+1) q(x)=x^9+x^8+...+x\\\\ q(x)=x(x^8+x^7+...+1)](https://tex.z-dn.net/?f=q%28x%29%3Dx%5E9%2Bx%5E8%2B...%2Bx%5C%5C%5C%5C+q%28x%29%3Dx%28x%5E8%2Bx%5E7%2B...%2B1%29)
Pelo que vimos anteriormente, as raízes de q(x) são 0 e as raízes nonas da unidade. Agora vamos conferir se também são raizes de p(x):
--- Para
:
![p(0)=0^{9999}+0^{8888}+...+0^{1111}\\\\ p(0)=0 p(0)=0^{9999}+0^{8888}+...+0^{1111}\\\\ p(0)=0](https://tex.z-dn.net/?f=p%280%29%3D0%5E%7B9999%7D%2B0%5E%7B8888%7D%2B...%2B0%5E%7B1111%7D%5C%5C%5C%5C+p%280%29%3D0)
--- Para
:
![p(w_9)=w_9^{9999}+w_9^{8888}+...+w_9^{1111}\\\\ p(w_9)=w_9^{9\cdot1111}+w_9^{9\cdot987+5}+w_9^{9\cdot864+1}+w_9^{9\cdot740+6}+\\+w_9^{9\cdot617+2}+w_9^{9\cdot493+7}+w_9^{9\cdot370+3}+w_9^{9\cdot246+8}+w_9^{9\cdot123+4}\\\\<br />p(w_9)=(w_9^9)^{1111}+(w_9^9)^{987}\cdot w_9^5+(w_9^9)^{864}\cdot w_9+(w_9^9)^{740}\cdot w_9^6+\\+(w_9^9)^{617}\cdot w_9^2+(w_9^9)^{493}\cdot w_9^7+(w_9^9)^{370}\cdot w_9^3+(w_9^9)^{246}\cdot w_9^8+(w_9^9)^{123}\cdot w_9^4\\\\ p(w_9)=w_9^{9999}+w_9^{8888}+...+w_9^{1111}\\\\ p(w_9)=w_9^{9\cdot1111}+w_9^{9\cdot987+5}+w_9^{9\cdot864+1}+w_9^{9\cdot740+6}+\\+w_9^{9\cdot617+2}+w_9^{9\cdot493+7}+w_9^{9\cdot370+3}+w_9^{9\cdot246+8}+w_9^{9\cdot123+4}\\\\<br />p(w_9)=(w_9^9)^{1111}+(w_9^9)^{987}\cdot w_9^5+(w_9^9)^{864}\cdot w_9+(w_9^9)^{740}\cdot w_9^6+\\+(w_9^9)^{617}\cdot w_9^2+(w_9^9)^{493}\cdot w_9^7+(w_9^9)^{370}\cdot w_9^3+(w_9^9)^{246}\cdot w_9^8+(w_9^9)^{123}\cdot w_9^4\\\\](https://tex.z-dn.net/?f=p%28w_9%29%3Dw_9%5E%7B9999%7D%2Bw_9%5E%7B8888%7D%2B...%2Bw_9%5E%7B1111%7D%5C%5C%5C%5C+p%28w_9%29%3Dw_9%5E%7B9%5Ccdot1111%7D%2Bw_9%5E%7B9%5Ccdot987%2B5%7D%2Bw_9%5E%7B9%5Ccdot864%2B1%7D%2Bw_9%5E%7B9%5Ccdot740%2B6%7D%2B%5C%5C%2Bw_9%5E%7B9%5Ccdot617%2B2%7D%2Bw_9%5E%7B9%5Ccdot493%2B7%7D%2Bw_9%5E%7B9%5Ccdot370%2B3%7D%2Bw_9%5E%7B9%5Ccdot246%2B8%7D%2Bw_9%5E%7B9%5Ccdot123%2B4%7D%5C%5C%5C%5C%3Cbr+%2F%3Ep%28w_9%29%3D%28w_9%5E9%29%5E%7B1111%7D%2B%28w_9%5E9%29%5E%7B987%7D%5Ccdot+w_9%5E5%2B%28w_9%5E9%29%5E%7B864%7D%5Ccdot+w_9%2B%28w_9%5E9%29%5E%7B740%7D%5Ccdot+w_9%5E6%2B%5C%5C%2B%28w_9%5E9%29%5E%7B617%7D%5Ccdot+w_9%5E2%2B%28w_9%5E9%29%5E%7B493%7D%5Ccdot+w_9%5E7%2B%28w_9%5E9%29%5E%7B370%7D%5Ccdot+w_9%5E3%2B%28w_9%5E9%29%5E%7B246%7D%5Ccdot+w_9%5E8%2B%28w_9%5E9%29%5E%7B123%7D%5Ccdot+w_9%5E4%5C%5C%5C%5C)
![\\\\p(w_9)=1^{1111}+1^{987}\cdot w_9^5+1^{864}\cdot w_9+1^{740}\cdot w_9^6+\\+1^{617}\cdot w_9^2+1^{493}\cdot w_9^7+1^{370}\cdot w_9^3+1^{246}\cdot w_9^8+1^{123}\cdot w_9^4\\\\<br />p(w_9)=1+w_9^5+w_9+w_9^6+\\+w_9^2+w_9^7+w_9^3+w_9^8+w_9^4\\\\<br />p(w_9)=1+w_9+w_9^2+...+w_9^8 \\\\p(w_9)=1^{1111}+1^{987}\cdot w_9^5+1^{864}\cdot w_9+1^{740}\cdot w_9^6+\\+1^{617}\cdot w_9^2+1^{493}\cdot w_9^7+1^{370}\cdot w_9^3+1^{246}\cdot w_9^8+1^{123}\cdot w_9^4\\\\<br />p(w_9)=1+w_9^5+w_9+w_9^6+\\+w_9^2+w_9^7+w_9^3+w_9^8+w_9^4\\\\<br />p(w_9)=1+w_9+w_9^2+...+w_9^8](https://tex.z-dn.net/?f=%5C%5C%5C%5Cp%28w_9%29%3D1%5E%7B1111%7D%2B1%5E%7B987%7D%5Ccdot+w_9%5E5%2B1%5E%7B864%7D%5Ccdot+w_9%2B1%5E%7B740%7D%5Ccdot+w_9%5E6%2B%5C%5C%2B1%5E%7B617%7D%5Ccdot+w_9%5E2%2B1%5E%7B493%7D%5Ccdot+w_9%5E7%2B1%5E%7B370%7D%5Ccdot+w_9%5E3%2B1%5E%7B246%7D%5Ccdot+w_9%5E8%2B1%5E%7B123%7D%5Ccdot+w_9%5E4%5C%5C%5C%5C%3Cbr+%2F%3Ep%28w_9%29%3D1%2Bw_9%5E5%2Bw_9%2Bw_9%5E6%2B%5C%5C%2Bw_9%5E2%2Bw_9%5E7%2Bw_9%5E3%2Bw_9%5E8%2Bw_9%5E4%5C%5C%5C%5C%3Cbr+%2F%3Ep%28w_9%29%3D1%2Bw_9%2Bw_9%5E2%2B...%2Bw_9%5E8)
Pelo lema que vimos,![p(w_9)=0 p(w_9)=0](https://tex.z-dn.net/?f=p%28w_9%29%3D0)
Portanto, todas as raízes de q(x) são raízes de p(x), donde se conclui que q(x) divide p(x).
Queremos verificar se q(x) divide p(x), o que é equivalente a mostrarmos se todas as raízes de q(x) também são raizes de p(x). Seguindo esse procedimento, vamos tentar encontrar as raízes de q(x). Para isso, utilizaremos o seguinte lema:
Lema: Se
———————————————
Prova: Podemos escrever:
Podemos considerar que
Pela definição dada,
Como queríamos demonstrar.
Obs: Como há n-1 raízes n-ésimas da unidade diferentes de 1 e
———————————————
Vamos analisar q(x):
Pelo que vimos anteriormente, as raízes de q(x) são 0 e as raízes nonas da unidade. Agora vamos conferir se também são raizes de p(x):
--- Para
--- Para
Pelo lema que vimos,
Portanto, todas as raízes de q(x) são raízes de p(x), donde se conclui que q(x) divide p(x).
Usuário anônimo:
Muito bom.. Obrigada!! :)
Perguntas interessantes
Matemática,
11 meses atrás
Geografia,
11 meses atrás
Física,
11 meses atrás
Geografia,
1 ano atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás
Filosofia,
1 ano atrás