Verifique o valor de y sabendo que y= cos x+tgx, sen x= -0,7 e x € QIII
Soluções para a tarefa
Respondido por
1
Caso esteja pelo app, e tenha problemas para visualizar esta resposta, experimente abrir pelo navegador: https://brainly.com.br/tarefa/10516206
——————————
Sabendo que sen x = – 0,7, e x é um arco do QIII (3º quadrante), calcular y = cos x + tg x.
—————
• Calculando cos x:
![\mathsf{sen\,x=-0,\!7}\\\\ \mathsf{sen\,x=-\,\dfrac{7}{10}}\\\\\\ \mathsf{10\,sen\,x=-\,7} \mathsf{sen\,x=-0,\!7}\\\\ \mathsf{sen\,x=-\,\dfrac{7}{10}}\\\\\\ \mathsf{10\,sen\,x=-\,7}](https://tex.z-dn.net/?f=%5Cmathsf%7Bsen%5C%2Cx%3D-0%2C%5C%217%7D%5C%5C%5C%5C+%5Cmathsf%7Bsen%5C%2Cx%3D-%5C%2C%5Cdfrac%7B7%7D%7B10%7D%7D%5C%5C%5C%5C%5C%5C+%5Cmathsf%7B10%5C%2Csen%5C%2Cx%3D-%5C%2C7%7D)
Eleve os dois lados ao quadrado:
![\mathsf{(10\,sen\,x)^2=(-\,7)^2}\\\\ \mathsf{100\,sen^2\,x=49} \mathsf{(10\,sen\,x)^2=(-\,7)^2}\\\\ \mathsf{100\,sen^2\,x=49}](https://tex.z-dn.net/?f=%5Cmathsf%7B%2810%5C%2Csen%5C%2Cx%29%5E2%3D%28-%5C%2C7%29%5E2%7D%5C%5C%5C%5C+%5Cmathsf%7B100%5C%2Csen%5E2%5C%2Cx%3D49%7D)
Mas sen² x = 1 – cos² x. Então, ficamos com
![\mathsf{100\cdot (1-cos^2\,x)=49}\\\\ \mathsf{100-100\,cos^2\,x=49}\\\\ \mathsf{100-49=100\,cos^2\,x}\\\\ \mathsf{51=100\,cos^2\,x}\\\\ \mathsf{cos^2\,x=\dfrac{51}{100}} \mathsf{100\cdot (1-cos^2\,x)=49}\\\\ \mathsf{100-100\,cos^2\,x=49}\\\\ \mathsf{100-49=100\,cos^2\,x}\\\\ \mathsf{51=100\,cos^2\,x}\\\\ \mathsf{cos^2\,x=\dfrac{51}{100}}](https://tex.z-dn.net/?f=%5Cmathsf%7B100%5Ccdot+%281-cos%5E2%5C%2Cx%29%3D49%7D%5C%5C%5C%5C+%5Cmathsf%7B100-100%5C%2Ccos%5E2%5C%2Cx%3D49%7D%5C%5C%5C%5C+%5Cmathsf%7B100-49%3D100%5C%2Ccos%5E2%5C%2Cx%7D%5C%5C%5C%5C+%5Cmathsf%7B51%3D100%5C%2Ccos%5E2%5C%2Cx%7D%5C%5C%5C%5C+%5Cmathsf%7Bcos%5E2%5C%2Cx%3D%5Cdfrac%7B51%7D%7B100%7D%7D)
Tomando as raízes quadradas dos dois lados,
![\mathsf{cos\,x=\pm\,\sqrt{\dfrac{51}{100}}}\\\\\\ \mathsf{cos\,x=\pm\,\dfrac{\sqrt{51}}{10}} \mathsf{cos\,x=\pm\,\sqrt{\dfrac{51}{100}}}\\\\\\ \mathsf{cos\,x=\pm\,\dfrac{\sqrt{51}}{10}}](https://tex.z-dn.net/?f=%5Cmathsf%7Bcos%5C%2Cx%3D%5Cpm%5C%2C%5Csqrt%7B%5Cdfrac%7B51%7D%7B100%7D%7D%7D%5C%5C%5C%5C%5C%5C+%5Cmathsf%7Bcos%5C%2Cx%3D%5Cpm%5C%2C%5Cdfrac%7B%5Csqrt%7B51%7D%7D%7B10%7D%7D)
Mas como x é um arco do 3º quadrante, então cos x é negativo:
✔
• Calculando tg x:
![\mathsf{tg\,x=\dfrac{sen\,x}{cos\,x}}\\\\\\ \mathsf{tg\,x=\dfrac{-\,\frac{7}{10}}{~-\frac{\sqrt{51}}{10}~}}\\\\\\ \mathsf{tg\,x=-\,\dfrac{7}{\diagup\!\!\!\!\! 10}\cdot \bigg(\!\!-\dfrac{\diagup\!\!\!\!\! 10}{\sqrt{51}}\bigg)} \mathsf{tg\,x=\dfrac{sen\,x}{cos\,x}}\\\\\\ \mathsf{tg\,x=\dfrac{-\,\frac{7}{10}}{~-\frac{\sqrt{51}}{10}~}}\\\\\\ \mathsf{tg\,x=-\,\dfrac{7}{\diagup\!\!\!\!\! 10}\cdot \bigg(\!\!-\dfrac{\diagup\!\!\!\!\! 10}{\sqrt{51}}\bigg)}](https://tex.z-dn.net/?f=%5Cmathsf%7Btg%5C%2Cx%3D%5Cdfrac%7Bsen%5C%2Cx%7D%7Bcos%5C%2Cx%7D%7D%5C%5C%5C%5C%5C%5C+%5Cmathsf%7Btg%5C%2Cx%3D%5Cdfrac%7B-%5C%2C%5Cfrac%7B7%7D%7B10%7D%7D%7B%7E-%5Cfrac%7B%5Csqrt%7B51%7D%7D%7B10%7D%7E%7D%7D%5C%5C%5C%5C%5C%5C+%5Cmathsf%7Btg%5C%2Cx%3D-%5C%2C%5Cdfrac%7B7%7D%7B%5Cdiagup%5C%21%5C%21%5C%21%5C%21%5C%21+10%7D%5Ccdot+%5Cbigg%28%5C%21%5C%21-%5Cdfrac%7B%5Cdiagup%5C%21%5C%21%5C%21%5C%21%5C%21+10%7D%7B%5Csqrt%7B51%7D%7D%5Cbigg%29%7D)
✔
—————
Portanto, o valor de y é
![\mathsf{y=cos\,x+tg\,x}\\\\ \mathsf{y=-\,\dfrac{\sqrt{51}}{10}+\dfrac{7}{\sqrt{51}}} \mathsf{y=cos\,x+tg\,x}\\\\ \mathsf{y=-\,\dfrac{\sqrt{51}}{10}+\dfrac{7}{\sqrt{51}}}](https://tex.z-dn.net/?f=%5Cmathsf%7By%3Dcos%5C%2Cx%2Btg%5C%2Cx%7D%5C%5C%5C%5C+%5Cmathsf%7By%3D-%5C%2C%5Cdfrac%7B%5Csqrt%7B51%7D%7D%7B10%7D%2B%5Cdfrac%7B7%7D%7B%5Csqrt%7B51%7D%7D%7D)
Reduzindo as frações ao mesmo denominador comum,
![\mathsf{y=-\,\dfrac{\sqrt{51}\cdot \sqrt{51}}{10\sqrt{51}}+\dfrac{7\cdot 10}{10\sqrt{51}}}\\\\\\ \mathsf{y=-\,\dfrac{51}{10\sqrt{51}}+\dfrac{70}{10\sqrt{51}}}\\\\\\ \mathsf{y=\dfrac{-51+70}{10\sqrt{51}}} \mathsf{y=-\,\dfrac{\sqrt{51}\cdot \sqrt{51}}{10\sqrt{51}}+\dfrac{7\cdot 10}{10\sqrt{51}}}\\\\\\ \mathsf{y=-\,\dfrac{51}{10\sqrt{51}}+\dfrac{70}{10\sqrt{51}}}\\\\\\ \mathsf{y=\dfrac{-51+70}{10\sqrt{51}}}](https://tex.z-dn.net/?f=%5Cmathsf%7By%3D-%5C%2C%5Cdfrac%7B%5Csqrt%7B51%7D%5Ccdot+%5Csqrt%7B51%7D%7D%7B10%5Csqrt%7B51%7D%7D%2B%5Cdfrac%7B7%5Ccdot+10%7D%7B10%5Csqrt%7B51%7D%7D%7D%5C%5C%5C%5C%5C%5C+%5Cmathsf%7By%3D-%5C%2C%5Cdfrac%7B51%7D%7B10%5Csqrt%7B51%7D%7D%2B%5Cdfrac%7B70%7D%7B10%5Csqrt%7B51%7D%7D%7D%5C%5C%5C%5C%5C%5C+%5Cmathsf%7By%3D%5Cdfrac%7B-51%2B70%7D%7B10%5Csqrt%7B51%7D%7D%7D)
<———— esta é a resposta.
—————
Caso prefira, você pode racionalizar o denominador, mas não é necessário:
![\mathsf{y=\dfrac{19\cdot \sqrt{51}}{10\sqrt{51}\cdot \sqrt{51}}}\\\\\\ \mathsf{y=\dfrac{19\sqrt{51}}{10\cdot 51}} \mathsf{y=\dfrac{19\cdot \sqrt{51}}{10\sqrt{51}\cdot \sqrt{51}}}\\\\\\ \mathsf{y=\dfrac{19\sqrt{51}}{10\cdot 51}}](https://tex.z-dn.net/?f=%5Cmathsf%7By%3D%5Cdfrac%7B19%5Ccdot+%5Csqrt%7B51%7D%7D%7B10%5Csqrt%7B51%7D%5Ccdot+%5Csqrt%7B51%7D%7D%7D%5C%5C%5C%5C%5C%5C+%5Cmathsf%7By%3D%5Cdfrac%7B19%5Csqrt%7B51%7D%7D%7B10%5Ccdot+51%7D%7D)
<———— novamente, esta é a resposta.
Bons estudos! :-)
——————————
Sabendo que sen x = – 0,7, e x é um arco do QIII (3º quadrante), calcular y = cos x + tg x.
—————
• Calculando cos x:
Eleve os dois lados ao quadrado:
Mas sen² x = 1 – cos² x. Então, ficamos com
Tomando as raízes quadradas dos dois lados,
Mas como x é um arco do 3º quadrante, então cos x é negativo:
• Calculando tg x:
—————
Portanto, o valor de y é
Reduzindo as frações ao mesmo denominador comum,
—————
Caso prefira, você pode racionalizar o denominador, mas não é necessário:
Bons estudos! :-)
Fernandanecessitada:
Muito obrigada ❤
Perguntas interessantes
Sociologia,
11 meses atrás
Matemática,
11 meses atrás
Português,
11 meses atrás
Matemática,
1 ano atrás
Sociologia,
1 ano atrás
Biologia,
1 ano atrás