Valendo 25 pontos + 13 para melhor resposta!
Calcule o valor dos limites (PASSO A PASSO!):
A) ![\lim_{x\to \0}0= \frac{x^{2} -3x}{4x} \lim_{x\to \0}0= \frac{x^{2} -3x}{4x}](https://tex.z-dn.net/?f=+%5Clim_%7Bx%5Cto+%5C0%7D0%3D+%5Cfrac%7Bx%5E%7B2%7D+-3x%7D%7B4x%7D+)
B) ![\lim_{x\to \0}5 = \frac{ x^{2}- 10X+25 }{x-5} \lim_{x\to \0}5 = \frac{ x^{2}- 10X+25 }{x-5}](https://tex.z-dn.net/?f=+%5Clim_%7Bx%5Cto+%5C0%7D5+%3D+%5Cfrac%7B+x%5E%7B2%7D-+10X%2B25+%7D%7Bx-5%7D+)
C) ![\lim_{x\to \0}4 = \frac{ \sqrt{x} -2}{x-4} \lim_{x\to \0}4 = \frac{ \sqrt{x} -2}{x-4}](https://tex.z-dn.net/?f=%5Clim_%7Bx%5Cto+%5C0%7D4+%3D++%5Cfrac%7B+%5Csqrt%7Bx%7D+-2%7D%7Bx-4%7D+)
D)
Soluções para a tarefa
Respondido por
1
a) Coloque o x em evidencia:
![\lim_{x \to 0} \frac{x^2 -3x}{4x} \\ \lim_{x \to 0} \frac{x(x-3)}{4x} \\ \lim_{x \to 0} \frac{x-3}{4} = \frac{-3}{4} \lim_{x \to 0} \frac{x^2 -3x}{4x} \\ \lim_{x \to 0} \frac{x(x-3)}{4x} \\ \lim_{x \to 0} \frac{x-3}{4} = \frac{-3}{4}](https://tex.z-dn.net/?f=%5Clim_%7Bx+%5Cto+0%7D+%5Cfrac%7Bx%5E2+-3x%7D%7B4x%7D+%5C%5C+%5Clim_%7Bx+%5Cto+0%7D+%5Cfrac%7Bx%28x-3%29%7D%7B4x%7D+%5C%5C+%5Clim_%7Bx+%5Cto+0%7D+%5Cfrac%7Bx-3%7D%7B4%7D+%3D+%5Cfrac%7B-3%7D%7B4%7D)
b) Ache as raízes da equação, reescreva ela na forma (x-α)(x-β) *onde α e β são as raízes*
![\lim_{x \to 5} \frac{x^2-10x+25}{x-5} \\ \lim_{x \to 5} \frac{(x-5)(x-5)}{x-5} \\ \lim_{x \to 5}x-5 =0 \lim_{x \to 5} \frac{x^2-10x+25}{x-5} \\ \lim_{x \to 5} \frac{(x-5)(x-5)}{x-5} \\ \lim_{x \to 5}x-5 =0](https://tex.z-dn.net/?f=+%5Clim_%7Bx+%5Cto+5%7D+%5Cfrac%7Bx%5E2-10x%2B25%7D%7Bx-5%7D+%5C%5C+%5Clim_%7Bx+%5Cto+5%7D+%5Cfrac%7B%28x-5%29%28x-5%29%7D%7Bx-5%7D+%5C%5C+%5Clim_%7Bx+%5Cto+5%7Dx-5+%3D0)
c)Multiplique pelo conjugado
![\lim_{x \to 4} \frac{ \sqrt{x} -2}{x-4} \\ \lim_{x \to 4} \frac{ \sqrt{x} -2}{x-4} \frac{ \sqrt{x} +2}{ \sqrt{x} +2} \\ \lim_{x \to 4} \frac{ x -4}{(x-4)( \sqrt{x} +2)} \\ \lim_{x \to 4} \frac{1}{ \sqrt{x} +2}= \frac{1}{4} \lim_{x \to 4} \frac{ \sqrt{x} -2}{x-4} \\ \lim_{x \to 4} \frac{ \sqrt{x} -2}{x-4} \frac{ \sqrt{x} +2}{ \sqrt{x} +2} \\ \lim_{x \to 4} \frac{ x -4}{(x-4)( \sqrt{x} +2)} \\ \lim_{x \to 4} \frac{1}{ \sqrt{x} +2}= \frac{1}{4}](https://tex.z-dn.net/?f=+%5Clim_%7Bx+%5Cto+4%7D+%5Cfrac%7B+%5Csqrt%7Bx%7D+-2%7D%7Bx-4%7D+%5C%5C++%5Clim_%7Bx+%5Cto+4%7D+%5Cfrac%7B+%5Csqrt%7Bx%7D+-2%7D%7Bx-4%7D++%5Cfrac%7B+%5Csqrt%7Bx%7D+%2B2%7D%7B+%5Csqrt%7Bx%7D+%2B2%7D++%5C%5C++%5Clim_%7Bx+%5Cto+4%7D+%5Cfrac%7B+x+-4%7D%7B%28x-4%29%28+%5Csqrt%7Bx%7D+%2B2%29%7D+%5C%5C++%5Clim_%7Bx+%5Cto+4%7D++%5Cfrac%7B1%7D%7B+%5Csqrt%7Bx%7D+%2B2%7D%3D+%5Cfrac%7B1%7D%7B4%7D+)
d)Note que o numerador é um produto notável:
![c^{2} - d^{2} = (c-d)(c+d) c^{2} - d^{2} = (c-d)(c+d)](https://tex.z-dn.net/?f=+c%5E%7B2%7D+-+d%5E%7B2%7D+%3D+%28c-d%29%28c%2Bd%29)
onde c=a-x e d=a
![\lim_{x \to 0} \frac{(a-x)^2 -a^2}{x} \\ \lim_{x \to 0} \frac{((a-x)-a)((a-x)+a)}{x} \\ \lim_{x \to 0} \frac{-x(2a-x)}{x} \\ \lim_{x \to 0} -(2a-x) \\ \lim_{x \to 0} -2a+x = -2a \lim_{x \to 0} \frac{(a-x)^2 -a^2}{x} \\ \lim_{x \to 0} \frac{((a-x)-a)((a-x)+a)}{x} \\ \lim_{x \to 0} \frac{-x(2a-x)}{x} \\ \lim_{x \to 0} -(2a-x) \\ \lim_{x \to 0} -2a+x = -2a](https://tex.z-dn.net/?f=+%5Clim_%7Bx+%5Cto+0%7D++%5Cfrac%7B%28a-x%29%5E2+-a%5E2%7D%7Bx%7D++%5C%5C++%5Clim_%7Bx+%5Cto+0%7D++%5Cfrac%7B%28%28a-x%29-a%29%28%28a-x%29%2Ba%29%7D%7Bx%7D+%5C%5C++%5Clim_%7Bx+%5Cto+0%7D++%5Cfrac%7B-x%282a-x%29%7D%7Bx%7D+%5C%5C++%5Clim_%7Bx+%5Cto+0%7D+-%282a-x%29+%5C%5C++%5Clim_%7Bx+%5Cto+0%7D++-2a%2Bx+%3D+-2a)
b) Ache as raízes da equação, reescreva ela na forma (x-α)(x-β) *onde α e β são as raízes*
c)Multiplique pelo conjugado
d)Note que o numerador é um produto notável:
onde c=a-x e d=a
Perguntas interessantes