Valendo 20 pontos!
❗ Repostas completas, bem feitas e com exemplos, será dada como melhor resposta ( Tempo: no máximo 30 minutos)❗
Explique como se faz para ver se uma raiz é irracional ou irracional na decomposição de números primos?
*Eu consigo resolver, mas não consigo explicar!
Soluções para a tarefa
Resposta:
Olá,
Auxilie todos a concluir que se houver primos com expoente ímpar na decomposição em fatores primos de um número, esse número terá raiz quadrada irracional.
Antes de partir para o cálculo de raízes não exatas propriamente dito, é necessário relembrar como calcular raízes de um modo geral e o que são raízes exatas e não exatas.
Calculando raízes
Calcular a raiz de um número resume-se a procurar por outro número que, multiplicado por ele mesmo determinada quantidade de vezes, tenha como resultado o número dado.
A representação de raízes é feita da seguinte maneira:
*n, chamado de índice, é o número de fatores da potência que gerou a, chamado de radicando, e L é o resultado, chamado de raiz.
Desse modo, L é um número que foi multiplicado por si mesmo n vezes e o resultado dessa multiplicação foi a.
L·L·L·L...L·L = a
Raízes exatas e não exatas
Dizemos que uma raiz é exata quando L é um número inteiro. São alguns exemplos de raízes exatas:
a) A raiz quadrada de 9, pois 3·3 = 9
b) A raiz cúbica de 8, pois 2·2·2 = 8
c) A raiz quarta de 16, pois 2·2·2·2 = 16
Entretanto, quando não é possível encontrar número inteiro que seja raiz de um número, então, essa raiz não é exata. Todas elas pertencem ao conjunto dos números irracionais e, por isso, todas elas são decimais infinitos. São alguns exemplos de raízes não exatas:
a) Raiz quadrada de 2
b) Raiz cúbica de 3
c) Raiz quarta de 5
Cálculo de raízes não exatas
Caso 1 – Radicando primo
Se o radicando pertence ao conjunto dos números primos, é preciso procurar por valores aproximados para sua raiz. Esse cálculo é feito procurando-se por raízes exatas próximas ao radicando e, posteriormente, aproximando a raiz do radicando tendo como base a raiz exata mais próxima.
Espero ter ajudado,
Bons estudos!