Matemática, perguntado por matematicarossi, 1 ano atrás

Utilizando as regras de derivação, faça o cálculo ANEXO

Anexos:

Soluções para a tarefa

Respondido por Usuário anônimo
2
Boa noite Carossi!

Solução!

 \dfrac{\partial x^{2} cos(x)}{\partial x } \\\\\\
Regra ~~de~~ diferenciaca\~ao\\\\\\\
 \dfrac{\partial x^{2}cos(x) }{\partial x}+ \dfrac{\partial cos(x) x^{2} }{\partial x}\\\\\\\
Simplificada!\\\\\\\
cos(x) \dfrac{\partial  x^{2} }{\partial x}+ \dfrac{\partial cos(x)}{\partial x}  x^{2} \\\\\\\\
cos(x).2x+ \dfrac{\partial cos(x)}{\partial x}. x^{2} \\\\\\\\\
2cos(x).x+   \dfrac{\partial cos(x)}{\partial x}. x^{2} \\\\\\\\\

Aplicando ~~a~~ regra ~~de~~ diferenciac\~ao ~~novamente!\\\\\\\
2cos(x)-sen(x). x^{2}\\\\\\
2cos(x)- x^{2} sen(x)\\\\\\
 \dfrac{\partial f}{\partial x}= 2cos(x)- x^{2} sen(x)\\\\\\\\\\\\
\boxed{Resposta:2cos(x)- x^{2} sen(x)}\\\\\\\
 \boxed{Resposta:D}


Boa noite!
Bons estudos!

Perguntas interessantes