Matemática, perguntado por viihhsantos47, 3 meses atrás

utilizando a fórmula de combinação, calcule C11,4 e C7,3 ?
MIM AJUDEMMMM ​

Soluções para a tarefa

Respondido por GeBEfte
2

A combinação \sf \left( C_{n,m}\right) de "n" termos tomados "m" a "m" é dada por:

\sf C_{n,m}~=~\dfrac{n!}{m!\cdot (n-m)!}

Então:

\sf C_{11,4}~=~\dfrac{11!}{4!\cdot (11-4)!}\\\\\\\sf C_{11,4}~=~\dfrac{11!}{4!\cdot 7!}\\\\\\\sf C_{11,4}~=~\dfrac{11\cdot 10\cdot 9\cdot 8\cdot 7!}{4\cdot 3\cdot 2\cdot 1\cdot 7!}\\\\\\\sf C_{11,4}~=~\dfrac{11\cdot 10\cdot 9\cdot 8\cdot \not\!\!7!}{4\cdot 3\cdot 2\cdot 1\cdot \not\!\!7!}\\\\\\\sf C_{11,4}~=~\dfrac{11\cdot 10\cdot 9\cdot 8}{4\cdot 3\cdot 2\cdot 1}\\\\\\\sf C_{11,4}~=~\dfrac{7920}{24}\\\\\\\boxed{\sf C_{11,4}~=~330}

\sf C_{7,3}~=~\dfrac{7!}{3!\cdot (7-3)!}\\\\\\\sf C_{7,3}~=~\dfrac{7!}{3!\cdot 4!}\\\\\\\sf C_{7,3}~=~\dfrac{7\cdot 6\cdot 5\cdot 4!}{3\cdot 2\cdot 1\cdot 4!}\\\\\\\sf C_{7,3}~=~\dfrac{7\cdot 6\cdot 5\cdot  \not\!\!4!}{3\cdot 2\cdot 1\cdot \not\!\!4!}\\\\\\\sf C_{7,3}~=~\dfrac{7\cdot 6\cdot 5}{3\cdot 2\cdot 1}\\\\\\\sf C_{7,3}~=~\dfrac{210}{6}\\\\\\\boxed{\sf C_{7,3}~=~35}

\Huge{\begin{array}{c}\Delta \tt{\!\!\!\!\!\!\,\,o}\!\!\!\!\!\!\!\!\:\,\perp\end{array}}Qualquer~d\acute{u}vida,~deixe~ um~coment\acute{a}rio

Perguntas interessantes