Matemática, perguntado por Usuário anônimo, 5 meses atrás

Use as propriedades logarítmicas e que log 2 ≈ 0, 301 para calcular o valor dos logaritmos a seguir:
a) log 200

b) log 125/8 (lembre que 5 = 10/2)

c) log \sqrt[4]{2} · 10−5

Soluções para a tarefa

Respondido por auditsys
2

Resposta:

\textsf{Leia abaixo}

Explicação passo a passo:

\mathsf{log\:200 = log\:(2.10^2)}

\mathsf{log\:200 = log\:2 + 2\:log\:10)}

\mathsf{log\:200 = 0,301 + 2(1)}

\mathsf{log\:200 = 0,301 + 2}

\boxed{\boxed{\mathsf{log\:200 = 2,301}}}

\mathsf{log\left(\dfrac{125}{8}\right) = log\left(\dfrac{5}{2}\right)^3}

\mathsf{log\left(\dfrac{125}{8}\right) = 3\:(\:log\:5 - log\:2\:)}

\mathsf{log\left(\dfrac{125}{8}\right) = 3\:(\:log\:\dfrac{10}{2} - log\:2\:)}

\mathsf{log\left(\dfrac{125}{8}\right) = 3\:(\:log\:10 - log\:2 - log\:2\:)}

\mathsf{log\left(\dfrac{125}{8}\right) = 3\:(\:1 - 0,301 - 0,301\:)}

\mathsf{log\left(\dfrac{125}{8}\right) = 3\:(0,398)}

\boxed{\boxed{\mathsf{log\left(\dfrac{125}{8}\right) = 1,194}}}

\mathsf{log\:\sqrt[4]{2}\:.\:10^{-5} = log\:2^{\frac{1}{4}} + (-5)\:log\:10}

\mathsf{log\:\sqrt[4]{2}\:.\:10^{-5} = \dfrac{1}{4}\:log\:2 + (-5)\:log\:10}

\mathsf{log\:\sqrt[4]{2}\:.\:10^{-5} = \dfrac{0,301}{4} - 5}

\boxed{\boxed{\mathsf{log\:\sqrt[4]{2}\:.\:10^{-5} = -4,92}}}

Perguntas interessantes