Matemática, perguntado por MMchar, 1 ano atrás

Usando as fórmulas trigonométricas, calcule:

sen^2 ( 3π/8)

Soluções para a tarefa

Respondido por alevini
1
\mathsf{sen^2\dfrac{3\pi}{8}}

\mathsf{sen^267,5^o}

\mathsf{sen^2(60^o+7,5^o)}

Calculando o seno de 7,5 a partir da fórmula de arco metade:

\mathsf{cos^2\dfrac{\alpha}{2}=\dfrac{1+cos\mbox{ }\alpha}{2}}

\mathsf{sen^2\dfrac{\alpha}{2}=\dfrac{1-cos\mbox{ }\alpha}{2}}

\mathsf{cos^215^o=\dfrac{1+cos\mbox{ }30^o}{2}}

\mathsf{cos^215^o=\dfrac{1+\dfrac{\sqrt3}{2}}{2}}

\mathsf{cos^215^o=\dfrac{2+\sqrt3}{4}}

\boxed{\mathsf{cos\mbox{ }15^o=\dfrac{\sqrt{2+\sqrt3}}{2}}}

\mathsf{cos^27,5^o=\dfrac{1+cos\mbox{ }15^o}{2}}

\mathsf{cos^27,5^o=\dfrac{1+\dfrac{\sqrt{2+\sqrt3}}{2}}{2}}

\mathsf{cos^27,5^o=\dfrac{2+\sqrt{2+\sqrt3}}{4}}

\mathsf{cos\mbox{ }7,5^o=\dfrac{\sqrt{2+\sqrt{2+\sqrt3}}}{2}}

Calculando o seno de 7,5:

\boxed{\mathsf{sen^2x+cos^2x=1}}

\mathsf{sen^27,5^o+\dfrac{2+\sqrt{2+\sqrt3}}{4}=1}

\mathsf{sen^27,5^o=1-\dfrac{2+\sqrt{2+\sqrt3}}{4}}

\mathsf{sen^27,5^o=\dfrac{2-\sqrt{2+\sqrt3}}{4}}

\boxed{\mathsf{sen\mbox{ }7,5^o=\dfrac{\sqrt{2-\sqrt{2+\sqrt3}}}{2}}}

Agora, fazendo adição de arcos:

\boxed{\mathsf{cos\mbox{ }(\alpha+\beta)=cos\mbox{ }\alpha\cdot cos\mbox{ }\beta-sen\mbox{ }\alpha\cdot sen\mbox{ }\beta}}

\mathsf{cos\mbox{ }67,5^o=\dfrac{1}{2}\cdot\dfrac{\sqrt{2+\sqrt{2+\sqrt3}}}{2}-\dfrac{\sqrt3}{2}\cdot\dfrac{\sqrt{2-\sqrt{2+\sqrt3}}}{2}}

\mathsf{cos\mbox{ }67,5^o=\dfrac{\sqrt{2+\sqrt{2+\sqrt3}}}{4}-\dfrac{\sqrt{6-3\sqrt{2+\sqrt3}}}{4}}

\mathsf{cos\mbox{ }67,5^o=\dfrac{\sqrt{2+\sqrt{2+\sqrt3}}-\sqrt{6-3\sqrt{2+\sqrt3}}}{4}}

Elevando ao quadrado:

\mathsf{cos^267,5^o=\dfrac{(\sqrt{2+\sqrt{2+\sqrt3}})^2-2\cdot\sqrt{2+\sqrt{2+\sqrt3}}\cdot\sqrt{6-3\sqrt{2+\sqrt3}}+(\sqrt{6-3\sqrt{2+\sqrt3}})^2}{4^2}}

\mathsf{cos^267,5^o=\dfrac{2+\sqrt{2+\sqrt3}-2\cdot\sqrt{2+\sqrt{2+\sqrt3}}\cdot3\cdot\sqrt{2-\sqrt{2+\sqrt3}}+6-3\sqrt{3+\sqrt3}}{16}}

\mathsf{cos^267,5^o=\dfrac{8-2\sqrt{2+\sqrt3}-6\cdot\sqrt{2+\sqrt{2+\sqrt3}}\cdot\sqrt{2-\sqrt{2+\sqrt3}}}{16}}

\mathsf{cos^267,5^o=\dfrac{8-2\sqrt{2+\sqrt3}-6\sqrt{4-2+\sqrt3}}{16}}

\mathsf{cos^267,5^o=\dfrac{8-2\sqrt{2+\sqrt3}-6\sqrt{2+\sqrt3}}{16}}

\mathsf{cos^267,5^o=\dfrac{8-8\sqrt{2+\sqrt3}}{16}}

\mathsf{cos\mbox{ }67,5^o=\sqrt{\dfrac{4\cdot(2-2\sqrt{2+\sqrt3}}{16}}}

\boxed{\mathsf{cos\mbox{ }67,5^o=\dfrac{\sqrt{2-2\sqrt{2+\sqrt3}}}{2}}}

alevini: favor avisar se houver algo errado
MMchar: muito obrigada, ajudou muito
alevini: consegui dimimuir mais o resultado
Perguntas interessantes