Usando a definição de logaritmos, calcule:?
a) log100000
b) log1/2 32
c) log2/3 8/27
d) log2 0,25
e) log7 7
f) log4 1
g) log1/5 1/5
Soluções para a tarefa
Respondido por
2
Olá Mikaelle
a) 10^x = 100000 = 10^5 ⇒ x = 5
b) log1/2(32) = log2(1/32) ⇒ 2^x = 2^-5 ⇒ x = -5
c) log2/3(8/27) = log2/3(2/3^3) = 3
d) log2(1/4) ⇒ 2^x = 2^-2 ⇒ x = -2
e) log7(7) = 1
f) log4(1) = 0
g) log1/5(1/5) = 1
a) 10^x = 100000 = 10^5 ⇒ x = 5
b) log1/2(32) = log2(1/32) ⇒ 2^x = 2^-5 ⇒ x = -5
c) log2/3(8/27) = log2/3(2/3^3) = 3
d) log2(1/4) ⇒ 2^x = 2^-2 ⇒ x = -2
e) log7(7) = 1
f) log4(1) = 0
g) log1/5(1/5) = 1
Respondido por
3
a) log100000 = x ==> 10^x = 100000==> 10^x =10^5 ==> x= 5
=======================================================
b) log1/2 = x ==> 32^x = 1/2==> (2^5)^x = 2^-1 ==> 5x= -1 ==> x = - 1/5
32
=====================================================
c) log2/3 = x ==> 2/3^x = 8/27==> 2/3^x = (2/3)³ ==> x= 3
8/27
=====================================================
d) log2 = x ==>0,25^x = 2==> (1/4)^x = 2^1 ==>(2^5)^x = 2^-1 ==> 5x= -1
0,25
==>0,25^x = 2==> (1/4)^x = 2^1 ==>(2^-2)^x = 2^1
==> 2^-2x = 2^1 ==> -2x= 1(-1) ==> x = - 1/2
=====================================================
e) log7 = x ==> 7^x = 7 ==> 7^x = 7^1 ==> x = 1
7
=====================================================
f) log4 = x ==> 1^x = 4 sem solução pq as bases são diferentes.
1
=====================================================
g) log1/5 = x ==> (1/5)^x = (1/5)^1 ==> x = 1
1/5
Perguntas interessantes
Química,
10 meses atrás
Matemática,
10 meses atrás
Biologia,
10 meses atrás
Matemática,
1 ano atrás
Física,
1 ano atrás