URGENTEE
Um móvel se movimenta segundo uma trajetória retilínea e tem duas posições no decorrer do tempo dadas pelo gráfico abaixo. Pede-se:
O instante em que o móvel passa pela origem das posições.
A funções horária das posições S=f(t).
A posição do móvel, para t=3s
A função horária da velocidade v=f(t)
Anexos:
Soluções para a tarefa
Respondido por
1
Claramente se trata de um movimento uniformemente variado (MUV), cuja equação do deslocamento é da forma:
S = So + Vot + at^2/2 ( 1 )
No gráfico, identifica-se os pontos:
(2, 16), (4, 40) e So = 0. Substituindo em ( 1 ):
16 = 2Vo + 2a, 8 = Vo + a
40 = 4Vo + 8a, 10 = Vo + 2a
Resolvendo o sistema, tem-se:
Vo = 8 - a, da primeira equação e substituindo na segunda eq:
10 = 8 - a + 2a
a = 2m/s^2 e vo = 6m/s. Com isso, a função horária da posição é:
S (t) = 6t + t^2
Para t = 3s
S (3) = 6×3 + 3^2 = 27m
A função velocidade no MUV é:
v = vo + at. Mas, vo = 6m/s e a = 2m/s^2
v (t) = 6 + 2t
ou, derivando a função da posição em relação ao tempo:
dS/dt = d/dt (6t + t^2 )
dS/dt = v (t) = 6 + 2t
Perguntas interessantes
Matemática,
7 meses atrás
Geografia,
7 meses atrás
Administração,
9 meses atrás
Matemática,
9 meses atrás
Física,
1 ano atrás