Matemática, perguntado por edgeinfinity31, 10 meses atrás

URGENTE!!!
O 6° termo do desenvolvimento de um binômio é 56x3y5.
Qual é o 4º termo desse binômio?
a) 45x⁵y³
b) 56x¹y⁷
c) 56x³y⁵
d) 56x⁵y³
e) 70x⁴y⁴

Soluções para a tarefa

Respondido por Otoninhuu
71

Resposta:

56x3y5.

Explicação passo-a-passo:

resposta é c


helena14096: Como assim Mano já respondi haha
ravenasoares13p5unwl: vlw pela resposta
Respondido por marcusviniciusbelo
58

O quarto termo desse binômio é igual a 56x5y3. Letra d).

A fórmula do termo geral para um desenvolvimento binomial de um binômio definido por (a + b)^n será:

T_{p + 1} = \binom{n}{p} a^{(n - p)}b^p

,onde p + 1 é o número do termo desejado, n a ordem do binômio e \binom{n}{p} a combinação de n termos tomados p a p.

A combinação de n termos tomados p a p é:

\binom{n}{p} = C_{n,p} = \frac{n!}{p!(n - p)!}

A questão já nos forneceu o 6º termo. Para o 6ºtermo temos:

p + 1 = 6

p = 6 - 1 = 5

Além disso vemos que nossas variáveis serão:

a = x

b = y

E, por fim, também desse 6º termo fornecido podemos deduzir a sua ordem comparando a fórmula do termo geral com o termo em si:

\binom{n}{p} a^{(n - p)}b^p = 56x^3y^5

Olhando para os expoentes podemos inferir:

n - p = 3

p = 5

Logo:

n - 5 = 3

n = 3 + 5 = 8

Portanto, nosso binômio tem a forma:

(x + y)^8

Agora, utilizando a mesma fórmula do termo geral, vamos calcular o 4º termo. Nosso p será:

p + 1 = 4

p = 4 - 1 = 3

Logo, o 4º termo é:

T_4 = \binom{8}{3}x^{(8 - 3)}y^3 = \frac{8!}{3!(8 - 3)!} x^5y^3\\T_4 = \frac{8*7*6*5!}{3!5!} x^5y^3 = \frac{8*7*6}{3!} x^5y^3\\\\T_4 = \frac{8*7*6}{3*2*1} x^5y^3 = 56x^5y^3

Você pode aprender mais sobre Binômios aqui: https://brainly.com.br/tarefa/20129643

Perguntas interessantes