Matemática, perguntado por JailsonSales91, 1 ano atrás

Uma urna contém 12 bolas: 5 brancas, 4 vermelhas e 3 pretas. Outra contém 18 bolas: 5

brancas, 6 vermelhas e 7 pretas. Uma bola é retirada de cada uma. Qual é a probabilidade de que as duas

bolas sejam de mesma cor?

Soluções para a tarefa

Respondido por profedu1965
6
A probabilidade do resultado esperado é a união das possibilidades de cada cor de bola. (b,B); (v,V); (p,P).

Na primeira urna temos:
b = 5/12
v = 4/12
p = 3/12

na segunda urna temos:
B= 5/18
V = 6/18
P = 7/18

Como a retirada da bola de uma urna não interfere na retirada de bola da outra urna, então os eventos são disjuntos e portanto a soma de cada um dos eventos.

Assim temos:

P(bB) = (5/12)*(5/18)
P(vV) = (4/12)*(6/18)
P(pP) = (3/12)*(7/18)

como elas são disjuntas
P(bB∪vV∪pP) = (5/12)*(5/18) + (4/12)*(6/18) + (3/12)*(7/18) = 70/216 = 35/218

Assim a probabilidade de sair uma bola da mesma cor é de 35/218.

JailsonSales91: obrigado pela ajuda
profedu1965: Jailson, a resposta está com um erro e não estou conseguindo editar. Ao invés de 35/218 a resposta correta é 35/108
JailsonSales91: Ok vou arrumar obrigado mais uma vez
Perguntas interessantes