Matemática, perguntado por fabicuissi, 1 ano atrás

Uma função afim f(x) = ax + b é tal que possui os pontos P (2, -2) e Q (-3, 13). Determine a função e classifique-a como crescente ou decrescente.

a.
f(x) = 3x + 4 e crescente.

b.
f(x) = 4x - 3 e decrescente.

c.
f(x) = -4x +3 e decrescente.

d.
f(x) = -3x - 4 e crescente.

e.
f(x) = -3x + 4 e decrescente.

Soluções para a tarefa

Respondido por evebmello
28
Observando o ponto P(2,-2):
Quando x = 2, y = -2. Então,
y = ax + b    ⇒   -2 = a.2 + b   ⇒   2a + b = -2

Observando agora o ponto Q(-3,13):
Quando x = -3, y = 13. Então,
13 = a.(-3) + b    ⇒   -3a + b = 13

Temos um sistema de duas equações com duas incógnitas:

 \left \{ {{2a+b=-2} \atop {-3a+b=13}} \right.

Multiplicando a primeira equação por (-1):

 \left \{ {{-2a-b=2} \atop {-3a+b=13}} \right.

Somando as duas equações:

-2a-3a-b+b=2+13 \\ -5a=15 \\ a=-3

Substituindo o valor de a encontrado na primeira equação:

2.(-3)+b=-2 \\ -6+b=-2 \\ b=-2+6 \\ b=4

Então com a=-3 e b=4, y=ax+b temos:

 y = f(x) = -3x + 4

Como a = -3 < 0, a função é decrescente.


Resposta correta: alternativa e)

DanJR: Parabéns pela explicação!
Perguntas interessantes