Matemática, perguntado por giovannigordex1, 1 ano atrás

uma empresa obtem seus lucros por L(x) = -x² + 6x + 16, em que x é o numero de peças e L é o lucro .
A) Calcule o numero de peças que se deve vender para obter lucro máximo.
B) Determine o lucro máximo


me ajudem pff

Soluções para a tarefa

Respondido por Zhynkron
1
a)

m = -(6/-2) → m = 3

=> 3 peças

b)

L(3) = -3² +6(3) +16

= -9 +18 +16

→ L = 25

=> lucro máximo é 25

giovannigordex1: valeu aí, tu eh gente boa
Respondido por augustopereirap73wz1
1
Olá!

B)

Para calcular o lucro máximo usamos Lm = -b / 2a

Primeiro, vamos descobrir quem é a, b e c.

L(x) = -x^2 + 6x + 16

a = -1
b = 6
c = 16

Lm = -6 / 2 . (-1)

Lm = -6 / -2

Lm = 6 / 2

Lm = 3

A)

Agora calculamos o número de peças para que se obtenha um lucro máximo.

Trocamos x por 3.

L(3) = -3^2 + 6 . 3 + 16

L(3) = -9 + 18 + 16

L(3) = 25

Resposta: Precisa de 3 peças para se obter o lucro máximo e o lucro máximo é 25.

Espero ter ajudado, bons estudos!

Zhynkron: Você trocou os valores amigo
Zhynkron: Por ser L(x) o Lm seria o eixo "x" e o L o eixo "y"
Zhynkron: As coordenadas do vértice, fica (3 , 25) e não (25 , 3)
augustopereirap73wz1: Olá, a resposta está na ordem dos itens A e B e não tem relação com as coordenadas do vertice.
augustopereirap73wz1: a posição das*
Zhynkron: Na realidade a questão é descrita exatamente como coordenadas do vértice (ponto máximo e mínimo). X é o eixo da abscissa, L o da coordenada.
Zhynkron: Os cálculos estão certos, mas a conclusão está errada. 3 peças dando lucro de 25 é diferente de 25 peças dando lucro de 3
augustopereirap73wz1: Ok, vou consertar.
augustopereirap73wz1: No momento não consigo editar a pergunta.
augustopereirap73wz1: E obrigado por me dizer aonde está o erro, achei que era sobre a ordem das respostas.
Perguntas interessantes