Uma criança deseja criar triângulos utilizando palitos de fósforo de mesmo comprimento. Cada triângulo será construído com exatamente 17 palitos e pelo menos um dos lados do triângulo deve ter o comprimento de exatamente 6 palitos. A figura ilustra um triângulo construído com essas características.
A quantidade máxima de triângulos não congruentes dois a dois que podem ser construídos é
a) 3.
b) 5.
c) 6.
d) 8.
e) 10.
Anexos:
Soluções para a tarefa
Respondido por
37
Alternativa A!
Como cheguei nessa conclusão!
A questão afirma que o perímetro do triângulo será de 17 palitos.
Assim, sendo x palitos a medida que representa o maior lado do triângulo, calculamos:
17/3 ≤ x ≤ 17/2
Então, os possíveis resultados são 6, 7 e 8.
Com esses dados, fiz as combinações:
Maior lado 6
Outros dois lados: 6 e 5
Maior lado 7
Outros dois lados: 6 e 4
Maior lado 8
Outros dois lados: 6 e 3
Como cheguei nessa conclusão!
A questão afirma que o perímetro do triângulo será de 17 palitos.
Assim, sendo x palitos a medida que representa o maior lado do triângulo, calculamos:
17/3 ≤ x ≤ 17/2
Então, os possíveis resultados são 6, 7 e 8.
Com esses dados, fiz as combinações:
Maior lado 6
Outros dois lados: 6 e 5
Maior lado 7
Outros dois lados: 6 e 4
Maior lado 8
Outros dois lados: 6 e 3
Respondido por
4
Alternativa A!
Como cheguei nessa conclusão!
A questão afirma que o perímetro do triângulo será de 17 palitos.
Assim, sendo x palitos a medida que representa o maior lado do triângulo, calculamos:
17/3 ≤ x ≤ 17/2
Então, os possíveis resultados são 6, 7 e 8.
Com esses dados, fiz as combinações:
Maior lado 6
Outros dois lados: 6 e 5
Maior lado 7
Outros dois lados: 6 e 4
Maior lado 8
Outros dois lados: 6 e 3
Perguntas interessantes