Matemática, perguntado por WessFerreira, 1 ano atrás

Uma cerca de 4 metros de altura corre paralela a um edifício alto, a uma distância de 1 metro do edifício. Qual o comprimento da menor escada que se apoie no chão e na parede do prédio, por cima da cerca?

Soluções para a tarefa

Respondido por numero20
2

Essa questão envolve o estudo da trigonometria. Note que podemos montar um triângulo retângulo quando analisamos o problema. Temos a base (distância horizontal entre a cerca e o prédio) e a altura (mesma da cerca).

Assim, o comprimento da escada formará a hipotenusa desse triângulo, o qual podemos calcular através do Teorema de Pitágoras, onde temos que a hipotenusa ao quadrado deve ser igual a soma dos catetos ao quadrado.

a^{2} =b^{2} +c^{2} \\ \\ x^{2} =4^{2} +1^{2} \\ \\ x^{2} =17\\ \\ x=\sqrt{17}  \ m

Desse modo, o comprimento da escada deve ser de √17 metros, ou ainda, 4,1 metros, para que ela consiga vencer o vão entre o edifício e a cerca.


kleberperesp: Oi, como ele pede que a escada esteja no chão apoiada por cima da cerca, são dois triângulos equivalentes, fiz por semelhança de ângulos e triângulos, assim dobrou o tamanho da escada, acho que está certo né?
Perguntas interessantes