Um vetor v forma ângulos agudos congruentes com os semi-eixos coordenados
positivos. Calcule suas coordenadas sabendo que IIvII=3
Soluções para a tarefa
Respondido por
12
O ângulo entre dois vetores u e w é β, tal que:
![\boxed{\boxed{cos~\beta=\dfrac{\vec{u}\cdot\vec{w}}{||\vec{u}||\cdot||\vec{w}||}}} \boxed{\boxed{cos~\beta=\dfrac{\vec{u}\cdot\vec{w}}{||\vec{u}||\cdot||\vec{w}||}}}](https://tex.z-dn.net/?f=%5Cboxed%7B%5Cboxed%7Bcos%7E%5Cbeta%3D%5Cdfrac%7B%5Cvec%7Bu%7D%5Ccdot%5Cvec%7Bw%7D%7D%7B%7C%7C%5Cvec%7Bu%7D%7C%7C%5Ccdot%7C%7C%5Cvec%7Bw%7D%7C%7C%7D%7D%7D)
_____________________________
Ângulo entre v e os eixos: θ
Sejam I, J e K vetores representantes dos eixos Ox, Oy e Oz, respectivamente:
![\vec{I}=(1,~0,~0)\\\vec{J}=(0,~1,~0)\\\vec{Z}=(0,~0,~1) \vec{I}=(1,~0,~0)\\\vec{J}=(0,~1,~0)\\\vec{Z}=(0,~0,~1)](https://tex.z-dn.net/?f=%5Cvec%7BI%7D%3D%281%2C%7E0%2C%7E0%29%5C%5C%5Cvec%7BJ%7D%3D%280%2C%7E1%2C%7E0%29%5C%5C%5Cvec%7BZ%7D%3D%280%2C%7E0%2C%7E1%29)
_________________
Como os ângulos entre os vetores v e I, v e J, e v e K são iguais a θ:
![cos~\theta=cos~\theta=cos~\theta\\\\\\\dfrac{\vec{v}\cdot\vec{I}}{||\vec{v}||\cdot||\vec{I}||}=\dfrac{\vec{v}\cdot\vec{J}}{||\vec{v}||\cdot||\vec{J}||}=\dfrac{\vec{v}\cdot\vec{K}}{||\vec{v}||\cdot||\vec{K}||}\\\\\\\dfrac{\vec{v}\cdot\vec{I}}{||\vec{I}||}=\dfrac{\vec{v}\cdot\vec{J}}{||\vec{J}||}=\dfrac{\vec{v}\cdot\vec{K}}{||\vec{K}||}\\\\\\\dfrac{(x,~y,~z)\cdot(1,~0,~0)}{||(1,~0,~0)||}=\dfrac{(x,~y,~z)\cdot(0,~1,~0)}{||(0,~1,~0)||}=\dfrac{(x,~y,~z)\cdot(0,~0,~1)}{||(0,~0,~1)||} cos~\theta=cos~\theta=cos~\theta\\\\\\\dfrac{\vec{v}\cdot\vec{I}}{||\vec{v}||\cdot||\vec{I}||}=\dfrac{\vec{v}\cdot\vec{J}}{||\vec{v}||\cdot||\vec{J}||}=\dfrac{\vec{v}\cdot\vec{K}}{||\vec{v}||\cdot||\vec{K}||}\\\\\\\dfrac{\vec{v}\cdot\vec{I}}{||\vec{I}||}=\dfrac{\vec{v}\cdot\vec{J}}{||\vec{J}||}=\dfrac{\vec{v}\cdot\vec{K}}{||\vec{K}||}\\\\\\\dfrac{(x,~y,~z)\cdot(1,~0,~0)}{||(1,~0,~0)||}=\dfrac{(x,~y,~z)\cdot(0,~1,~0)}{||(0,~1,~0)||}=\dfrac{(x,~y,~z)\cdot(0,~0,~1)}{||(0,~0,~1)||}](https://tex.z-dn.net/?f=cos%7E%5Ctheta%3Dcos%7E%5Ctheta%3Dcos%7E%5Ctheta%5C%5C%5C%5C%5C%5C%5Cdfrac%7B%5Cvec%7Bv%7D%5Ccdot%5Cvec%7BI%7D%7D%7B%7C%7C%5Cvec%7Bv%7D%7C%7C%5Ccdot%7C%7C%5Cvec%7BI%7D%7C%7C%7D%3D%5Cdfrac%7B%5Cvec%7Bv%7D%5Ccdot%5Cvec%7BJ%7D%7D%7B%7C%7C%5Cvec%7Bv%7D%7C%7C%5Ccdot%7C%7C%5Cvec%7BJ%7D%7C%7C%7D%3D%5Cdfrac%7B%5Cvec%7Bv%7D%5Ccdot%5Cvec%7BK%7D%7D%7B%7C%7C%5Cvec%7Bv%7D%7C%7C%5Ccdot%7C%7C%5Cvec%7BK%7D%7C%7C%7D%5C%5C%5C%5C%5C%5C%5Cdfrac%7B%5Cvec%7Bv%7D%5Ccdot%5Cvec%7BI%7D%7D%7B%7C%7C%5Cvec%7BI%7D%7C%7C%7D%3D%5Cdfrac%7B%5Cvec%7Bv%7D%5Ccdot%5Cvec%7BJ%7D%7D%7B%7C%7C%5Cvec%7BJ%7D%7C%7C%7D%3D%5Cdfrac%7B%5Cvec%7Bv%7D%5Ccdot%5Cvec%7BK%7D%7D%7B%7C%7C%5Cvec%7BK%7D%7C%7C%7D%5C%5C%5C%5C%5C%5C%5Cdfrac%7B%28x%2C%7Ey%2C%7Ez%29%5Ccdot%281%2C%7E0%2C%7E0%29%7D%7B%7C%7C%281%2C%7E0%2C%7E0%29%7C%7C%7D%3D%5Cdfrac%7B%28x%2C%7Ey%2C%7Ez%29%5Ccdot%280%2C%7E1%2C%7E0%29%7D%7B%7C%7C%280%2C%7E1%2C%7E0%29%7C%7C%7D%3D%5Cdfrac%7B%28x%2C%7Ey%2C%7Ez%29%5Ccdot%280%2C%7E0%2C%7E1%29%7D%7B%7C%7C%280%2C%7E0%2C%7E1%29%7C%7C%7D)
Resolvendo os produtos escalares e achando os módulos:
![\dfrac{x\cdot1+y\cdot0+z\cdot0}{\sqrt{1^{2}+0^{2}+0^{2}}}=\dfrac{x\cdot0+y\cdot1+z\cdot0}{\sqrt{0^{2}+1^{2}+0^{2}}}=\dfrac{x\cdot0+y\cdot0+z\cdot1}{\sqrt{0^{2}+0^{2}+1^{2}}}\\\\\\\dfrac{x}{\sqrt{1}}=\dfrac{y}{\sqrt{1}}=\dfrac{z}{\sqrt{1}}\\\\\\\boxed{\boxed{x=y=z}} \dfrac{x\cdot1+y\cdot0+z\cdot0}{\sqrt{1^{2}+0^{2}+0^{2}}}=\dfrac{x\cdot0+y\cdot1+z\cdot0}{\sqrt{0^{2}+1^{2}+0^{2}}}=\dfrac{x\cdot0+y\cdot0+z\cdot1}{\sqrt{0^{2}+0^{2}+1^{2}}}\\\\\\\dfrac{x}{\sqrt{1}}=\dfrac{y}{\sqrt{1}}=\dfrac{z}{\sqrt{1}}\\\\\\\boxed{\boxed{x=y=z}}](https://tex.z-dn.net/?f=%5Cdfrac%7Bx%5Ccdot1%2By%5Ccdot0%2Bz%5Ccdot0%7D%7B%5Csqrt%7B1%5E%7B2%7D%2B0%5E%7B2%7D%2B0%5E%7B2%7D%7D%7D%3D%5Cdfrac%7Bx%5Ccdot0%2By%5Ccdot1%2Bz%5Ccdot0%7D%7B%5Csqrt%7B0%5E%7B2%7D%2B1%5E%7B2%7D%2B0%5E%7B2%7D%7D%7D%3D%5Cdfrac%7Bx%5Ccdot0%2By%5Ccdot0%2Bz%5Ccdot1%7D%7B%5Csqrt%7B0%5E%7B2%7D%2B0%5E%7B2%7D%2B1%5E%7B2%7D%7D%7D%5C%5C%5C%5C%5C%5C%5Cdfrac%7Bx%7D%7B%5Csqrt%7B1%7D%7D%3D%5Cdfrac%7By%7D%7B%5Csqrt%7B1%7D%7D%3D%5Cdfrac%7Bz%7D%7B%5Csqrt%7B1%7D%7D%5C%5C%5C%5C%5C%5C%5Cboxed%7B%5Cboxed%7Bx%3Dy%3Dz%7D%7D)
________________________
Como o módulo do vetor é 3:
![||\vec{v}||=3\\||\vec{v}||^{2}=3^{2}\\||\vec{v}||^{2}=9\\x^{2}+y^{2}+z^{2}=9 ||\vec{v}||=3\\||\vec{v}||^{2}=3^{2}\\||\vec{v}||^{2}=9\\x^{2}+y^{2}+z^{2}=9](https://tex.z-dn.net/?f=%7C%7C%5Cvec%7Bv%7D%7C%7C%3D3%5C%5C%7C%7C%5Cvec%7Bv%7D%7C%7C%5E%7B2%7D%3D3%5E%7B2%7D%5C%5C%7C%7C%5Cvec%7Bv%7D%7C%7C%5E%7B2%7D%3D9%5C%5Cx%5E%7B2%7D%2By%5E%7B2%7D%2Bz%5E%7B2%7D%3D9)
Como y = z = x:
![x^{2}+x^{2}+x^{2}=9\\3x^{2}=9\\x^{2}=9/3\\x^{2}=3\\x=\pm\sqrt{3} x^{2}+x^{2}+x^{2}=9\\3x^{2}=9\\x^{2}=9/3\\x^{2}=3\\x=\pm\sqrt{3}](https://tex.z-dn.net/?f=x%5E%7B2%7D%2Bx%5E%7B2%7D%2Bx%5E%7B2%7D%3D9%5C%5C3x%5E%7B2%7D%3D9%5C%5Cx%5E%7B2%7D%3D9%2F3%5C%5Cx%5E%7B2%7D%3D3%5C%5Cx%3D%5Cpm%5Csqrt%7B3%7D)
Então:
![\boxed{\boxed{\vec{v}=(\sqrt{3},~\sqrt{3},~\sqrt{3})~~~~~ou~~~~\vec{v}=(-\sqrt{3},-\sqrt{3},-\sqrt{3})}} \boxed{\boxed{\vec{v}=(\sqrt{3},~\sqrt{3},~\sqrt{3})~~~~~ou~~~~\vec{v}=(-\sqrt{3},-\sqrt{3},-\sqrt{3})}}](https://tex.z-dn.net/?f=%5Cboxed%7B%5Cboxed%7B%5Cvec%7Bv%7D%3D%28%5Csqrt%7B3%7D%2C%7E%5Csqrt%7B3%7D%2C%7E%5Csqrt%7B3%7D%29%7E%7E%7E%7E%7Eou%7E%7E%7E%7E%5Cvec%7Bv%7D%3D%28-%5Csqrt%7B3%7D%2C-%5Csqrt%7B3%7D%2C-%5Csqrt%7B3%7D%29%7D%7D)
_____________________________
Ângulo entre v e os eixos: θ
Sejam I, J e K vetores representantes dos eixos Ox, Oy e Oz, respectivamente:
_________________
Como os ângulos entre os vetores v e I, v e J, e v e K são iguais a θ:
Resolvendo os produtos escalares e achando os módulos:
________________________
Como o módulo do vetor é 3:
Como y = z = x:
Então:
Perguntas interessantes
Matemática,
1 ano atrás
Geografia,
1 ano atrás
Filosofia,
1 ano atrás
Matemática,
1 ano atrás
Química,
1 ano atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás