Um triangulo tem 12 cm de perímetro e 6cm² area. quanto mede o raio da circunferência inscrita nesse triangulo?
Soluções para a tarefa
Respondido por
69
Trata-se de triângulo retângulo pois perímetro é o dobro da área. O famoso 3 x 4 x 5 de Pitágoras.
A fórmula para calcular o raio da circunferência: r= (CA + CO - HIP.) / 2
então (3 + 4 - 5) / 2 = 1
Bons estudos !!
A fórmula para calcular o raio da circunferência: r= (CA + CO - HIP.) / 2
então (3 + 4 - 5) / 2 = 1
Bons estudos !!
Respondido por
1
Para o cálculo do raio da circunferência inscrita, utilizamos a fórmula A=p.r, onde A é a área do triângulo, p o semiperimetro e r o raio da circunferência inscrita. Obtendo um raio igual a 1 cm.
Cálculo do semiperimetro
Considerando um triângulo de lados de tamanho A, B e C possui 12 cm de perímetro, ou seja, a soma do comprimento de cada lado resulta em 12, então:
A + B + C = 12
Para encontrarmos o raio da circunferência inscrita, temos que lembrar que a área do triângulo (A) é igual ao raio da circunferência (r) inscrita vezes o semiperímetro (p), logo:
A = p.r
- O semiperímetro é calculado através da divisão do perímetro do triangulo por dois, logo:
p = 12/2
p=6
Cálculo do raio da circunferência
- Considerando a informação dada, que a área do triângulo igual a 6, substituindo os valores na fórmula da área, temos:
A = p.r
6 = 6.r
r = 1cm
Aprenda mais sobre triângulos em https://brainly.com.br/tarefa/49067988
#SPJ2
Anexos:
Perguntas interessantes
Português,
11 meses atrás
Matemática,
11 meses atrás
Português,
11 meses atrás
Matemática,
1 ano atrás
Pedagogia,
1 ano atrás
Matemática,
1 ano atrás