Um total de 325 bolas são arranjadas em filas da seguinte maneira: na 1ª fila,1 bola;na 2ª fila ,2 bolas;na 3ª fila,3 bolas e assim sucessivamente. Determine o numero de filas de tal modo a arranjar esse total de bolas.
R: 25
Como fazer?
Soluções para a tarefa
Respondido por
21
1 + 2 + 3 + 4 + ... + n = 325 Soma dos n primeiros termos da PA
Tire a média aritmética entre o 1º e o último termo e multiplique pelo número de termos. Essa é a fórmula.
Sn = (A1 + An) . n / 2 ==> 325 = (1 + n).n / 2 ==> n² + n = 650
n² + n - 650 = 0 ..........delta = 1² - 4.1.(-650) = 1 + 2600 = 2601
raiz quadrada de delta = 51
n = ( -1 ± 51 ) / 2 ==> n = 25 ou n = -26 (não serve)
Resposta: o número de filas é 25
Tire a média aritmética entre o 1º e o último termo e multiplique pelo número de termos. Essa é a fórmula.
Sn = (A1 + An) . n / 2 ==> 325 = (1 + n).n / 2 ==> n² + n = 650
n² + n - 650 = 0 ..........delta = 1² - 4.1.(-650) = 1 + 2600 = 2601
raiz quadrada de delta = 51
n = ( -1 ± 51 ) / 2 ==> n = 25 ou n = -26 (não serve)
Resposta: o número de filas é 25
IsaahhSantos:
Muito obrigada! Eu estava me enrolando na fórmula
Perguntas interessantes
Biologia,
11 meses atrás
Química,
11 meses atrás
Português,
11 meses atrás
Matemática,
1 ano atrás
Português,
1 ano atrás
História,
1 ano atrás
Matemática,
1 ano atrás