um retângulo com dimensões x e y possui perímetro igual a 60 cm e área igual a 224cm² sendo assim os valores de x e y são?
Soluções para a tarefa
Resposta:letra
O retângulo é um quadrilátero que possui quatro ângulos retos. É formado por quatro lados, sendo os lados opostos paralelos, o que faz dele ser também um paralelogramo.
Sabemos que para calcular a área de um retângulo devemos usar a fórmula:
onde:
A → Área = 224cm²
b → base = x
h → altura = y
Como possuímos os dados tais dados, vamos substituir na fórmula da área do retângulo, com o intuito de gerar uma expressão.
Vamos reservar essa expressão da área ↑.
Partindo para o cálculo do PERÍMETRO do retângulo:
Temos que a fórmula da área de um retângulo é dada por:
onde:
2P → perímetro = 60cm
b → base = x
h → altura = y
Agora vamos substituir na fórmula do perímetro com intuito de gerar outra expressão.
Note que possuímos valores de "x" não numéricos, mas podemos igualá-los para encontrar algum valor numérico.
Fazendo isso:
Teremos que resolver essa equação do segundo grau através de Delta e Bháskara, os resultados que saírem negativos iremos desprezar, pois como estamos trabalhando com um retângulo, a medida que procuramos é de comprimento e não existe comprimento negativo.
Como podemos notar as medidas desses retângulo são: 14cm e 16cm.
Então podemos marcar a letra d)