Matemática, perguntado por giselleduarda, 1 ano atrás

Um reservatório em formato cilíndrico possui raio igual a 2 metros e sua altura é de 10 metros, como mostra a imagem a seguir. Qual é o volume desse reservatório? (considere π = 3,14).

Anexos:

Soluções para a tarefa

Respondido por Bento2015
51

Resposta: 125,6 m^{3}

vol = 2r x π x h

Explicação passo-a-passo:

raio = 2 ; π = 3,14 e altura(h) = 10

vol = 2r x π x h(altura) Substituindo temos

(2*2)* 3,14 * 10=

4 * 3,14 * 10 =

12,56 * 10 =125,6 m^{3}

Respondido por Usuário anônimo
2

Explicação passo-a-passo:

  • volume >>>

 \tt \: v = \pi. {r}^{2} .h

 \tt \: \pi =3,14 \\  \tt \: r = 2 \\  \tt \: h = 10

 \tt \: v = 3,14 \: . \:  {2}^{2}  \: . \: 10 \\  \tt \: v = 3,14 \: . \: 4 \: . \: 10 \\  \tt \: v = 3,14 \: . \: 40 \\   \red{ \boxed{\tt \: v = 125,6 {m}^{3} }}

att: S.S °^°

Perguntas interessantes