um poliedro convexo tem 3 faces triangulares e 7 faces quadrangularrs qual o número de vértices ?
Soluções para a tarefa
Resposta:
Explicação passo-a-passo:
A equação que relaciona número de arestas A, faces F e vértices V é:
V+F = A+2
Assim
V+F = A'+2
aonde A' = 2A e usamos isto pois vamos contar o número de arestas A em dobro, já que um polígono (uma face) faz fronteira com a outra e dividem ambas a MESMA aresta. Assim
V+F = A/2+2
Agora o número de faces F é dado por:
F = 3+1+1+2 = 7, vide enunciado.
O número de arestas:
triângulo tem 3 lados que serão as arestas, quadrado 4, e assim por diante. Logo:
A = 3*3+1*4+1*5+2*6=9+4+5+12=30
Assim
V+F = A/2+2
V+(7) = (30)/2 +2
V = 10
Portanto, tem 10 vértices.
Explicação passo-a-passo:
um poliedro convexo tem 3 faces triangulares e 7 faces quadrangularrs qual o número de vértices ?
F=3+7=10
A=3.(3)+7.(4)=9+28=37
V-A+F=2
V-37+10=2
V-27=2
V=2+27
V=29
espero ter ajudado!
boa noite !
V+(7) = (30)/2 +2
V = 10