Um objeto real que se encontra a uma distância
de 25 em de uma lente esférica delgada divergente,
cuja distância focal é, em valor absoluto, também de
25 em, terá uma imagem:
a) virtual, direita e reduzida, a 12,5 em do objeto.
b) real, invertida e do mesmo tamanho do objeto, a
25 em da lente.
c) real, invertida e ampliada, a 12,5 em da lente.
d) virtual, direita e ampliada, a 25 em do objeto.
e) Não fornecerá imagem.
Soluções para a tarefa
Equação de gauss para calcular p'
A imagem é virtual
Aumento
Como A=i/o
2=p/p'
p=2*p'
A imagem tem a metade do tamanho do objeto.
Esse objeto real em valor absoluto também de 25, terá uma imagem: terá uma imagem virtual, direita e reduzida, a 12,5 cm do objeto - letra a).
O que são lentes esféricas?
As lentes esféricas são aquelas que possuem meio transparentes, onde a luz consegue se propagar com facilidade, além de possuírem duas faces esféricas (sendo uma face esférica e outra plana).
- PS: As lentes também podem projetar dois tipos de características ópticas, sendo: Convergente ou Divergente.
Então quando analisarmos o enunciado sabendo dessa premissa, veremos que existem três modelos para as lentes "agirem", sendo assim:
- Se estiverem em posição "normal": Do > O
- Se forem lentes divergentes: F < O
- Mas se projetar uma Imagem Virtual: Di < O.
PS: "Do" e "Di" sendo Distância do Objeto e Distância da Imagem, respectivamente.
Aplicando a equação de Gauss, encontraremos:
- 1 / f = 1 / Do + 1 / Di
1 / -25 = 1 / 25 + 1 / Di
1 / Di = -1 / 25 - 1 / 25
1 / Di = -2 / 25
Di = 25 / -2
Di = -12,5 cm.
Agora visualizando qual tipo de imagem ela fornecerá, veremos que ao aumentarmos:
- A = -p' / p
A = - (-12,5) / 25
A = 0,5 sendo 1/2.
Para saber mais sobre Lentes:
brainly.com.br/tarefa/24550474
Espero ter ajudado nos estudos e bebam água :))
#SPJ3