Física, perguntado por lucianosilva6, 1 ano atrás

Um objeto oscila seguindo um movimento harmônico simples ao longo do eixo x (m) sua posição varia com o tempo (s) segundo a equação: x=3,00 (cos π/2t) A sua amplitude , frequência e período são respectivamente

Soluções para a tarefa

Respondido por lucasdasilva12j
40
Olá, 

  A equação genéria de um MHS é esta: X(t)=Xm.cos(wt+ \alpha ), onde Xm representa a amplitude do movimento, ou seja o valor máximo de distancia  que o objeto pode chegar, w representa a frequência angular, e alpha, representa a fase desse movimento.

   Logo podemos chegar a conclusão de que a amplitude desse movimento, baseado na equação genérica tem o valor de 3 unidades.
    
   A frequência em Hertz é dada por  \frac{w}{2 \pi } , logo seu valor será 1/4 Hz.

   
O período é o inverso da frequência, logo terá como valor 4 segundos.

Espero ter ajudado.

Eduardopaulomartins: vou ajudar
Eduardopaulomartins: equação do período f= w/2pi então substitui fica: pi/2/2pi=0,25
Eduardopaulomartins: período 1/0,25=4
Eduardopaulomartins: amplitude x=3
diegoengproducao: b. 3,00 m; 0,25 Hz e 4,00 s Feito e Corrigido
Respondido por diogodcm1
45

Resposta:

b.  3,00 m; 0,25 Hz e 4,00 s

Explicação:

Perguntas interessantes