um jardim de forma retangular tem 96m de area . se aumentarmos o comprimento desse jardim em 3m e a largura em 2m ,a area do jardim passa a ter 150m.assim ,quais as dimensões originais desse jardim??
Soluções para a tarefa
=> Área inicial = C . L = 96 m2 ...ou C = 96/L
=> Nova Área = (C + 3) . (L + 2) = 150
Resolvendo.
(C + 3) . (L + 2) = 150
C . L + 2C + 3L + 6 = 150
...como C .L = 96
96 + 2C + 3L + 6 = 150
2C + 3L = 150 -6 - 96
2C + 3L = 48
...como C = 96/L
2(96/L) + 3L = 48
mmc = L
(2 . 96) + 3L² = 48L
192 + 3L² - 48L = 0
3L² - 48L + 192 = 0
...pela fórmula resolvente encontramos uma única raiz R(1) = 8
Donde
As medidas iniciais são:
L = 8 ..como C = 96/L => C = 96/8 => C = 12
L = 8 m ...e.... C = 12 m
Espero ter ajudado
Para encontrarmos a área de um retângulo , usamos a seguinte fórmula:
▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃
A = C.L ( C = Comprimento e L = Largura )
▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃
A questão nos fala que a área inicial é 96cm² e que a área com o aumento é de 150 cm² , com isso montaremos nossa equação linear.
▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃
C.L=96
(C+3).(L+2)=150
▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃
C=96/L
CL+2C+3L+6 = 150
▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃
Como (CL) = 96 , vamos substituir na fórmula:
96+2C+3L+6=150
2C+3L = 150-96-6
2C+3L = 48
▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃
Substituindo o valor do C nesta fórmula temos:
2(96/L) +3L = 48
▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃
MMC = L
▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃
2.96+3L² = 48L
192+3L²=48L
3L²-48L+192=0
▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃
Temos uma equação quadrática:
▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃
a = 3
b = - 48
c= 192
▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃
Fórmula:
▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃
▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃
S { 8 }
▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃
Substituindo o valor do L na equação do cumprimento temos :
▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃
96/L = C
96/8 = C
12 = C
▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃
Como o comprimento é 12 , vamos substituir na fórmula da área para achar a largura.
▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃
C.L=96
12.L = 96
L = 96/12
L = 8
▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃
Logo as dimensões originais são 8 de largura e 12 de comprimento.
▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃