Matemática, perguntado por michelszalanski, 1 ano atrás

Um imóvel no valor de R$ 280.000,00 vai ser financiado em 10 anos em parcelas mensais iguais, sucessivas e postecipadas, com taxa de juros nominais de 26,40% aa/cm. O valor do coeficiente de financiamento e o valor das prestações deste financiamento são, respectivamente, de

Soluções para a tarefa

Respondido por manuel272
4

RESOLUÇÃO:

 

O QUE SABEMOS:

 

….Sabemos o Valor Presente do imóvel: 280.000

 

….Sabemos a taxa de juro NOMINAL de 26,4% anual capitalizável mensalmente ..isso implica uma taxa efetiva mensal de 2,2% (de 26,4/12) …ou 0,022

 

O QUE PRETENDEMOS SABER:

 

…O Valor do Coeficiente de financiamento

 

…O Valor das prestações mensais

 

Podemos resolver de duas formas que no fundo são iguais (só tem apresentações diferentes):

 

1ª Forma:

 

Calculo do Coeficiente de financiamento (CF):

 

Fórmula:

 

CF = i/[1 – (1/(1 + i)ⁿ)]

CF = 0,022/[1 – (1/(1 + 0,022)¹²⁰)]

CF = 0,022/[1 – (1/(1,022)¹²⁰)]

CF = 0,022/[1 – (1/(13,61781707)]

CF = 0,022/[1 – (0,07343321)]

CF = 0,022/(0,92656679)

CF = 0,023743566

 

Cálculo da Prestação mensal (PMT):

 

Fórmula:

 

PMT = VP . CF

 

PMT = 280000 . 0,023743566

 

PMT = 6648,19855 …ou 6648,20

 

2ª forma

 

Como temos de calcular também o valor da Prestação mensal …podemos utilizar logo a fórmula:

 

PMT = VP . [i . (1 + i)^n)]/[(1 + i)ⁿ – 1]

 

…note que tudo o que está a multiplicar pelo VP …é o CF ..embora apresentado de outra forma, resolvendo:

 

PMT = VP . [i . (1 + 0,022)¹²⁰)]/[(1 + 0,022)¹²⁰ – 1]

PMT = VP . [0,022 . (1,022)¹²⁰)]/[(1,022)¹²⁰ – 1]

 

PMT = VP . [0,022 . (13,61781707)]/[(13,61781707) – 1]

 

PMT = VP . (0,299592)/(12,61781707)

 

PMT = VP . (0,023743566)

 

Está calculado o CF …agora para continuar  o exercício é só substituir o VP ..por 280000

 

PMT = 280000 . (0,023743566)

 

PMT = 6648,19855 …ou 6648,20

 

 

Opção correta:

 

0,023743566 e 6648,20



Espero ter ajudado

Perguntas interessantes