Matemática, perguntado por matheuskeys1, 9 meses atrás

Um fabricante de peças realizou medições (em mm) de suas peças produzidas, elas possuem em média 850 mm e um desvio padrão de 40 mm, podendo ser determinada por uma distribuição normal.

Observação: Para resolução, utilizar tabela de distribuição normal reduzida (abaixo) para padronização dos valores.
Com isso, assinale a alternativa que apresenta a probabilidade de uma peça medir menos do que 900 mm:

Anexos:

Soluções para a tarefa

Respondido por gsena2008
0

Resposta:

89,44%

Explicação passo-a-passo:

Pr(X < 900) = Pr(Z < (900-850)/40) = Pr(Z < 1,25)

(Z é calculado para se utilizar a tabela da Distribuição Normal Reduzida)

Na tabela, na intersecção da linha 1,2 com a coluna 0,05, obtém-se:

Pr(0 < Z < 1,25) = 0,3944

Para obter Pr(Z < 1,25):

Pr(Z < 1,25) = Pr(Z < 0) + Pr(0 < Z < 1,25) = 0,5 + 0,3944 = 0,8944

O valor 0.5 decorre do fato de que a curva da Distribuição Normal é simétrica em relação à média, com as áreas sob a curva sendo iguais a 0,5 tanto acima como abaixo da média.

Portando, Pr(X < 900)=Pr(Z < 1,25) = 0,8944 ou 0,8944x100% = 89,44%

Perguntas interessantes