Física, perguntado por mrpilaconerd, 1 ano atrás

Um corpo é lançado verticalmente para cima num local onde g = 10m/s². Devido ao atrito com o ar, o corpo dissipa, durante a subida, 25% de sua energia cinética inicial na forma de calor. Nestas condições, pode-se afirmar que, se a altura máxima por ele atingida é 15cm, então a velocidade de lançamento, em m/s, foi:
a) 1,0
b) 2,0
c) 3,0
d) 4,0
e) 5,0

Soluções para a tarefa

Respondido por liditelesmartin
71
Ec = m.v²/2 
Ep = m.g.h 
Como a energia é conservativa,toda energia potencial será convertida em cinética,porém com uma perda aerodinâmica de 25% sobre o corpo.Então fica assim : 
Ec.0,75 = Ep  
0,75.m.v²/2 = m.g.h 
0,75v²/2 = g.h 
v² = 10.2.15.10-²/0,75 
v² = 300.10-²/0,75 
v² = 4/2
v = 2 m/s 
Alternativa: B
OBS: Ec - 25%.Ec = EC(1 - 0,25) = Ec.0,75
Respondido por alanjos79
2

A velocidade de lançamento do corpo foi de 2 m/s (Letra b).

Para responder corretamente a questão, é necessário aprender mais sobre o Princípio da Conservação da Energia.

Princípio da Conservação da Energia

Qualquer ação frente a um corpo qualquer resultará em geração de energia. Desde o lançamento de um projétil, até o aquecimento de um líquido, ou ainda o girar de um pêndulo, todos os processos físicos irão gerar energia.

Ampliando esse conceito, temos ainda, em todo o processo físico, a manutenção dessa energia. Em um processo físico, a energia desprendida durante todo o processo é a mesma. O que ocorre é a transformação de uma forma de energia em outra. Esse é o Princípio da Conservação da Energia.

Um exemplo desse princípio é o funcionamento de um motor automotivo. A partir da combustão do combustível adicionado a esse motor, a energia potencial associado a essa reação química é convertido em energia térmica. Parte dessa energia térmica é dissipada por transferência de calor entre os componentes do motor, e a grande parte é convertida em energia mecânica, movimentando o móvel.

Sendo assim, para a referida questão temos, com o lançamento vertical do corpo, a energia cinética (E_{c}) sendo aplicada no mesmo:

E_{c} =\frac{mv^{2} }{2}

Onde E_{c} representa a energia cinética, m a massa do corpo e v a velocidade do corpo.

Por ação do atrito com o ar, esse corpo perde velocidade. Quando ele atinge a altura máxima, esse corpo começa a descer. Isso acontece por conta da conversão dessa energia cinética em energia gravitacional (E_{g}):

E_{g}=m.g.h

Onde E_{g} representa a energia gravitacional, m a massa do corpo, h a altura atingida e g a aceleração do corpo.

Como temos a conversão de 75% da energia cinética (25% de perda) pelo corpo em energia gravitacional, podemos igualar as duas fórmulas. Assim, temos:

0,75 E_{c} = E_{g} \\\\0,75 \frac{mv^{2} }{2} =m.g.h\\\\\frac{0,75.v^{2} }{2} =g.h

Substituindo os valores (g = 10 m/s^{2}; h = 15 cm = 0,15 m), temos:

\frac{0,75.v^{2} }{2}  =10.0,15\\\\0,75.v^{2}=10.0,15.2\\\\v^{2} =\frac{10.0,15.2}{0,75} \\\\v^{2} = 4\\\\v=\sqrt{4} \\\\v=2 m/s

Aprenda mais sobre Princípio da Conservação da Energia aqui: https://brainly.com.br/tarefa/37471158 #SPJ2

Anexos:
Perguntas interessantes