Física, perguntado por GabrielWasserman, 1 ano atrás

Um carro de bombeiros transita a 90 km/h, com a sirene ligada, em uma rua reta e plana. A sirene emite um som de 630 Hz. Uma pessoa parada na calçada da rua, esperando para atravessar pela faixa de pedestre, escuta o som da sirene e observa o carro de bombeiros se aproximando. Nesta situação, a frequência do som ouvido pela pessoa é igual a: (Vsom = 340m/s). Por favor!!

Soluções para a tarefa

Respondido por Whatson
21
O nome do fenômeno é efeito doppler, que consiste na alteração da frequência percebida devido ao movimento de um dos referenciais (chamados de fonte ou emissor e observador ou receptor), que pode ser calculada por:

fpercebida= (freal)  \frac{Vsom+obs}{Vsom+Vfon}

Onde a velocidade do observador é positiva em caso de aproximação da fonte, e negativa quando em afastamento, do mesmo modo que a velocidade da fonte é positiva em caso de afastamento e negativa em caso de aproximação (não sei se isso não soa confuso, mas sempre que me refiro a uma ou outra velocidade, o referencial é o outro corpo, como, por exemplo, a velocidade do observador é relativa à fonte e vice-versa). No caso retratado, a fonte tem velocidade negativa, uma vez que se aproxima, então:

f= 630  \frac{340- \frac{90}{3,6} }{340-0}
f= 630  \frac{90}{340.3,6}
f=  \frac{56700}{1224}
faprox=46,32Hz

GabrielWasserman: Obrigadão!!!
Respondido por silvageeh
41

A frequência do som ouvido pela pessoa é igual a 680 Hz.

Para calcularmos a frequência de som ouvido pela pessoa, utilizaremos a fórmula: f' = f(v/(v - v₀)).

Sendo:

f' = frequência aparente

f = frequência real da fonte

v = velocidade do som

v₀ = velocidade do observador.

Do enunciado, temos que:

f = 630 Hz

v = 340 m/s

v₀ = 90 km/h.

Precisamos converter 90 km/h para m/s. Para isso, basta dividirmos o valor por 3,6.

Assim, 90 km/h = 25 m/s. Então, v₀ = 25 m/s.

Substituindo os dados acima na fórmula dada inicialmente, obtemos:

f' = 630(340/(340 - 25))

f' = 630(340/315)

f' = 214200/315

f' = 680.

Portanto, podemos concluir que a frequência do som ouvido pela pessoa é igual a 680 Hz.

Para mais informações sobre efeito doppler: https://brainly.com.br/tarefa/10453761

Anexos:
Perguntas interessantes