Matemática, perguntado por vaicorinthians19102, 7 meses atrás

Um caminhão, cuja carroceria está a uma altura de 1,2m do chão está estacionado em um terreno plano. Deseja-se
carregar uma máquina pesada neste caminhão e para isso será colocada uma rampa da carroceria do caminhão até o
chão. O comprimento minimo da rampa para que esta forme com o chão um ângulo máximo de 45º é, em metros, é
de?
Resolução:

com a conta por favorrrr​

Soluções para a tarefa

Respondido por mvdac
10

O comprimento mínimo da rampa para que esta forme com o chão um ângulo máximo de 45º é aproximadamente 1,692 metros.

Para responder a questão, vamos observar o que diz o enunciado:

  • A carroceria do caminhão está a 1,2 metros do chão;

  • O chão é um terreno plano;

  • Da carroceria até o chão será colocada uma rampa de ângulo máximo 45º.

Nota-se que o chão, a rampa e a altura da carroceria do caminhão formam um triângulo retângulo.

Em um triângulo retângulo, o maior lado da figura é a hipotenusa, nesse caso, a hipotenusa corresponde a rampa. Já o cateto oposto corresponde ao lado referente a altura da carroceria, enquanto o cateto adjacente corresponde ao chão.

Para descobrirmos a hipotenusa desse triângulo retângulo, que corresponde ao comprimento mínimo da rampa, devemos realizar o cálculo do seno, sabendo que o seno de 45º = √2 / 2:

Sen = cateto oposto / hipotenusa

Sen 45º = 1,2 / x

√2 / 2 = 1,2 / x

x√2 = 2 . 1,2

x√2 = 2,4

x = 2,4 / √2

Agora, seguindo a regra para frações com denominador composto por raiz quadrada, como é o caso acima, devemos multiplicar a fração 2,4 / √2 pela raiz quadrada √2:

x = 2,4 / √2 . √2 / √2

x = 2,4√2 / 2

x = 1,2√2

Note que √2 . √2 = 2, pois corta-se as raízes e mantém-se o número. Em seguida, na divisão x = 2,4√2 / 2, divide-se 2,4 / 2 = 1,2 e √2 / 2 = √2, resultando em x = 1,2√2.

Agora, vamos descobrir quanto é √2. A raiz quadrada de 2 não é um quadrado perfeito, pois nenhum número racional vezes ele mesmo é igual a 2. Nesse sentido, a raiz de 2 é igual a aproximadamente 1,41. Note que é uma raiz aproximada pois 1,41 x 1,41 = 1,9881.

A raiz quadrada de 2 não ser exata não é um problema na resolução dessa questão, uma vez que o enunciado pede o comprimento mínimo. Então, finalizando o cálculo com a raiz aproximada de 2, obtemos:

x = 1,2√2

x = 1,2 . 1,41

x =  1,692

Conclui-se, então, que o comprimento mínimo da rampa para que esta forme com o chão um ângulo máximo de 45º é 1,692 metros.

Aprenda mais:

https://brainly.com.br/tarefa/80872

Anexos:
Perguntas interessantes