Um balão de ar quente sai do solo as 9h da manha (origem do sistema cartesiano) e retorna ao solo 8h apos sua saida, conforme demostrado a seguir a altura h em metros do balão esta em função do tempo t, em horas, atras da formula: h(t)= -3/4*t^2+6t.
Soluções para a tarefa
A altura máxima do balão é de 12 km.
A fórmula que nos mostra a trajetória do balão é:
Onde h representa a altura atingida por ele e t o tempo após sua saída. Queremos saber qual a altura máxima dele, para isso calculamos a coordenada y do vértice de sua trajetória.
Aprenda mais em:
https://brainly.com.br/tarefa/22523001
A altura máxima alcançada pelo do balão é 12 m.
Primeiramente, observe que a função dada calcula a altura do balão em função do tempo t a partir de 9 horas, ou seja, do início do passeio. Como descreve a questão, o balão sai do solo às 9h da manhã (origem do sistema cartesiano) e retorna ao solo 8h após sua saída.
Para determinar a altura máxima que o balão atingiu, duas maneiras são apresentadas:
(1) Calcular .
A justificativa para tal é que a parábola que descreve a trajetória do balão é simétrica cortando o eixo em e . Isso é equivalente a pensar que o balão atinge a altura máxima na metade do passeio.
Dessa forma, a altura máxima alcançada pelo do balão é 12 m.
(2) Determinar a coordenada do vértice da parábola.
Para tal, lembre-se que podemos encontrar essa coordenada por meio da expressão:
, onde .
Substituindo:
Também, a altura máxima alcançada pelo do balão é 12 m.
Veja essas questões relacionadas:
https://brainly.com.br/tarefa/10971401
https://brainly.com.br/tarefa/24599284