( Ufam) Considere a matriz A= [-4 0
7 2]. Os valores de k que tornam nulo o determinante da matriz A=kI,sendo I a matriz igualdade,são:
A) 0e 5
B) -2 e 4
C) 0 e 4
D) -4 e 2
E) -4 e 0
Obs: o gabarito diz que a resposta é a letra "d" mas preciso fazer as contas.
Soluções para a tarefa
Respondido por
16
Olá
A matriz 'I', é a matriz identidade de mesma ordem que a matriz 'A'.
![\displaystyle\mathsf{ A= \left[\begin{array}{ccc}-4&0\\7&2\\\end{array}\right]} }\\\\\\\\\mathsf{I= \left[\begin{array}{ccc}1&0\\0&1\\\end{array}\right] }\\\\\\\mathsf{k = ?} \displaystyle\mathsf{ A= \left[\begin{array}{ccc}-4&0\\7&2\\\end{array}\right]} }\\\\\\\\\mathsf{I= \left[\begin{array}{ccc}1&0\\0&1\\\end{array}\right] }\\\\\\\mathsf{k = ?}](https://tex.z-dn.net/?f=%5Cdisplaystyle%5Cmathsf%7B+A%3D+%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-4%26amp%3B0%5C%5C7%26amp%3B2%5C%5C%5Cend%7Barray%7D%5Cright%5D%7D+%7D%5C%5C%5C%5C%5C%5C%5C%5C%5Cmathsf%7BI%3D+%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%26amp%3B0%5C%5C0%26amp%3B1%5C%5C%5Cend%7Barray%7D%5Cright%5D+%7D%5C%5C%5C%5C%5C%5C%5Cmathsf%7Bk+%3D+%3F%7D)
Igualando as matrizes
A = kI
![\displaystyle\mathsf{\left[\begin{array}{ccc}-4&0\\7&2\\\end{array}\right]}~=~k\cdot \left[\begin{array}{ccc}1&0\\0&1\\\end{array}\right]} \displaystyle\mathsf{\left[\begin{array}{ccc}-4&0\\7&2\\\end{array}\right]}~=~k\cdot \left[\begin{array}{ccc}1&0\\0&1\\\end{array}\right]}](https://tex.z-dn.net/?f=%5Cdisplaystyle%5Cmathsf%7B%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-4%26amp%3B0%5C%5C7%26amp%3B2%5C%5C%5Cend%7Barray%7D%5Cright%5D%7D%7E%3D%7Ek%5Ccdot+%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%26amp%3B0%5C%5C0%26amp%3B1%5C%5C%5Cend%7Barray%7D%5Cright%5D%7D)
Aplica a distributiva do 'k' na matriz 'I'
![\displaystyle\mathsf{ \left[\begin{array}{ccc}-4&0\\7&2\\\end{array}\right]}~=~ \left[\begin{array}{ccc}k&0\\0&k\\\end{array}\right]}}} \displaystyle\mathsf{ \left[\begin{array}{ccc}-4&0\\7&2\\\end{array}\right]}~=~ \left[\begin{array}{ccc}k&0\\0&k\\\end{array}\right]}}}](https://tex.z-dn.net/?f=%5Cdisplaystyle%5Cmathsf%7B+%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-4%26amp%3B0%5C%5C7%26amp%3B2%5C%5C%5Cend%7Barray%7D%5Cright%5D%7D%7E%3D%7E+%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dk%26amp%3B0%5C%5C0%26amp%3Bk%5C%5C%5Cend%7Barray%7D%5Cright%5D%7D%7D%7D)
![\displaystyle\mathsf{ \left[\begin{array}{ccc}-4&0\\7&2\\\end{array}\right]} ~-~ \left[\begin{array}{ccc}k&0\\0&k\\\end{array}\right]}}=0}\\\\\\\\\mathsf{\left[\begin{array}{ccc}(-4-k)&\quad(0-0)\\(7-0)&\quad(2-k)\\\end{array}\right]~=~0} \displaystyle\mathsf{ \left[\begin{array}{ccc}-4&0\\7&2\\\end{array}\right]} ~-~ \left[\begin{array}{ccc}k&0\\0&k\\\end{array}\right]}}=0}\\\\\\\\\mathsf{\left[\begin{array}{ccc}(-4-k)&\quad(0-0)\\(7-0)&\quad(2-k)\\\end{array}\right]~=~0}](https://tex.z-dn.net/?f=%5Cdisplaystyle%5Cmathsf%7B+%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-4%26amp%3B0%5C%5C7%26amp%3B2%5C%5C%5Cend%7Barray%7D%5Cright%5D%7D+%7E-%7E+%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dk%26amp%3B0%5C%5C0%26amp%3Bk%5C%5C%5Cend%7Barray%7D%5Cright%5D%7D%7D%3D0%7D%5C%5C%5C%5C%5C%5C%5C%5C%5Cmathsf%7B%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%28-4-k%29%26amp%3B%5Cquad%280-0%29%5C%5C%287-0%29%26amp%3B%5Cquad%282-k%29%5C%5C%5Cend%7Barray%7D%5Cright%5D%7E%3D%7E0%7D)
Calcula o determinante, e iguala a zero

Aplicando bhaskara para determinar os valores de k
k² + 2k - 8 = 0
Δ = 2² - 4.1.(-8)
Δ = 4 + 32
Δ = 36

Dúvidas? Deixe nos comentários.
A matriz 'I', é a matriz identidade de mesma ordem que a matriz 'A'.
Igualando as matrizes
A = kI
Aplica a distributiva do 'k' na matriz 'I'
Calcula o determinante, e iguala a zero
Aplicando bhaskara para determinar os valores de k
k² + 2k - 8 = 0
Δ = 2² - 4.1.(-8)
Δ = 4 + 32
Δ = 36
Dúvidas? Deixe nos comentários.
MoannaMichelle:
É uma regra fazer subtração na parte da distribuitiva?
Perguntas interessantes
Sociologia,
11 meses atrás
Inglês,
11 meses atrás
Geografia,
11 meses atrás
Matemática,
1 ano atrás
História,
1 ano atrás
Geografia,
1 ano atrás