Matemática, perguntado por israel65, 1 ano atrás

três exemplos de função modular

Soluções para a tarefa

Respondido por Usuário anônimo
5
Estabelecemos uma função através da relação entre duas grandezas (duas incógnitas), sendo que uma incógnita será dependente e essa terá que estar relacionada com apenas um valor que será a incógnita independente.

Seguindo essa definição, será considerada função modular toda função onde essa incógnita independente estiver dentro de módulos. Veja exemplos de funções modulares:

f(x) = |x| ou y = |x|, onde y incógnita dependente e x incógnita independente.

f(x) = |x -1|

f(x) = |x – 3| + 2

f(x) =  x2
          |x|

Considerando a definição de módulo de um número real, podemos definir função modular como sendo:

Função modular é toda função dos reais para os reais, escrita pela lei f(x) = |x|, sendo caracterizada da seguinte forma:

f(x) =  x, se x ≥ 0
         -x, se x < 0

Exemplo 1:

Construa o gráfico de função modular f(x) = |2x2 – 4x|. Aplicando a definição de módulo, teremos:

f(x) = 2x2 – 4x se 2x2 – 4x ≥ 0 
      -(2x2 – 4x) se -2x2 + 4x < 0

2x2 – 4x ≥ 0
2x2 – 4x = 0
x’ = 0
x” = 2


-2x2 + 4x < 0
-2x2 + 4x =0
x’ = 0
x” = 2


A união dos dois gráficos, considerando a definição de módulo, formará o gráfico da função f(x) = |2x2 – 4x|.


Respondido por alexandrexatas
0

Resposta:

exemplos seguem abaixo:

Explicação passo-a-passo:

Exemplos mais simples: f(x)= |2x|

E até mesmo mais "complexos":

f(x)=||2x-1|+7|

lembrando que x ∈ R, ou seja, ele PODE ser negativo ou positivo, porém o módulo ira somente deixar o valor NUMÉRICO DE X.

Bons estudos!

Perguntas interessantes