Três dos quatros lados de um terreno tem as seguintes medidas: 40 m, 30 m e 48 m. Tem também dois ângulos retos. Qual a medida, em metros, do quarto lado desse terreno?
Soluções para a tarefa
Respondido por
1
Esse terreno tem o formato de um trapézio regular, existindo três possibilidades de base: uma com 40m e dois lados de 30m e 48m; outra com 30m e dois lados de 40m e 48m e uma terceira com 48m e dois lados de 30m e 40m.
No primeiro caso forma-se um triângulo retângulo com catetos de 40m e 18m; no segundo caso forma-se um triângulo retângulo com catetos de 30m e 8m e no terceiro caso forma-se um triângulo retângulo com catetos de 48m e 10m.
No primeiro caso o cálculo fica sendo:
x = √(40²+18²) = √ (1600+ 324) = √1924 = 2√481
No segundo caso o cálculo fica sendo:
x = √(30²+8²) = √(900 + 64) = √964 = 2√241
No terceiro caso o cálculo fica sendo:
x = √(48²+10²) = √(2304 + 100) = √2404 = 2√601
No primeiro caso forma-se um triângulo retângulo com catetos de 40m e 18m; no segundo caso forma-se um triângulo retângulo com catetos de 30m e 8m e no terceiro caso forma-se um triângulo retângulo com catetos de 48m e 10m.
No primeiro caso o cálculo fica sendo:
x = √(40²+18²) = √ (1600+ 324) = √1924 = 2√481
No segundo caso o cálculo fica sendo:
x = √(30²+8²) = √(900 + 64) = √964 = 2√241
No terceiro caso o cálculo fica sendo:
x = √(48²+10²) = √(2304 + 100) = √2404 = 2√601
Perguntas interessantes
Artes,
10 meses atrás
Matemática,
10 meses atrás
História,
10 meses atrás
Português,
1 ano atrás
Matemática,
1 ano atrás
Geografia,
1 ano atrás
Geografia,
1 ano atrás