Matemática, perguntado por irianearaujo2016, 10 meses atrás

transforme em um unico radical:

Anexos:

Soluções para a tarefa

Respondido por Usuário anônimo
1

Explicação passo-a-passo:

a)

\sf \sqrt{3}\cdot\sqrt{5}

\sf =\sqrt{3\cdot5}

\sf =\red{\sqrt{15}}

b)

\sf \sqrt[3]{7}\cdot\sqrt[3]{11}

\sf =\sqrt[3]{7\cdot11}

\sf =\red{\sqrt[3]{77}}

c)

\sf \sqrt{2}\cdot\sqrt{5}\cdot\sqrt{7}

\sf =\sqrt{2\cdot5\cdot7}

\sf =\red{\sqrt{70}}

d)

\sf \sqrt[12]{50}\cdot\sqrt[12]{10}

\sf =\sqrt[12]{50\cdot10}

\sf =\red{\sqrt[12]{500}}

f)

\sf =\dfrac{\sqrt{12}\cdot\sqrt{15}}{\sqrt{8}}

\sf =\dfrac{\sqrt{12\cdot15}}{\sqrt{8}}

\sf =\dfrac{\sqrt{180}}{\sqrt{8}}

\sf =\dfrac{6\sqrt{5}}{\sqrt{8}}

\sf =\dfrac{6\sqrt{5}}{\sqrt{8}}\cdot\dfrac{\sqrt{8}}{\sqrt{8}}

\sf =\dfrac{6\sqrt{40}}{8}

\sf =\dfrac{6\cdot2\sqrt{10}}{8}

\sf =\dfrac{12\sqrt{10}}{8}

\sf =\red{\dfrac{3\sqrt{10}}{2}}

g)

\sf \dfrac{\sqrt{\sqrt[3]{4}}\cdot\sqrt{\sqrt[3]{10}}}{\sqrt[6]{120}}

\sf =\dfrac{\sqrt[6]{4}\cdot\sqrt[6]{10}}{\sqrt[6]{120}}

\sf =\dfrac{\sqrt[6]{40}}{\sqrt[6]{120}}

\sf =\dfrac{\sqrt[6]{40}}{\sqrt[6]{120}}\cdot\dfrac{\sqrt[6]{120}}{\sqrt[6]{120}}

\sf =\dfrac{\sqrt[6]{4800}}{120}

\sf =\dfrac{2\sqrt[6]{75}}{120}

\sf =\red{\dfrac{\sqrt[6]{75}}{60}}

Perguntas interessantes